
sensors

Article

Machine Learning Improvements to Human Motion
Tracking with IMUs

Pedro Manuel Santos Ribeiro 1,* , Ana Clara Matos 2, Pedro Henrique Santos 2 and
Jaime S. Cardoso 1,3

1 Faculty of Engineering, University of Porto, Dr. Roberto Frias Street, 4200-465 Porto, Portugal;
jaime.cardoso@inesctec.pt

2 SWORD Health, Sá da Bandeira Street, 4000-226 Porto, Portugal; anaclaramatos@swordhealth.com (A.C.M.);
pedro.santos@swordhealth.com (P.H.S.)

3 INESC TEC, Dr. Roberto Frias Street, 4200-465 Porto, Portugal
* Correspondence: pedrorib12345@gmail.com

Received: 19 September 2020; Accepted: 3 November 2020; Published: 9 November 2020 ����������
�������

Abstract: Inertial Measurement Units (IMUs) have become a popular solution for tracking human
motion. The main problem of using IMU data for deriving the position of different body segments
throughout time is related to the accumulation of the errors in the inertial data. The solution to this
problem is necessary to improve the use of IMUs for position tracking. In this work, we present several
Machine Learning (ML) methods to improve the position tracking of various body segments when
performing different movements. Firstly, classifiers were used to identify the periods in which the
IMUs were stopped (zero-velocity detection). The models Random Forest, Support Vector Machine
(SVM) and neural networks based on Long-Short-Term Memory (LSTM) layers were capable of
identifying those periods independently of the motion and body segment with a substantially higher
performance than the traditional fixed-threshold zero-velocity detectors. Afterwards, these techniques
were combined with ML regression models based on LSTMs capable of estimating the displacement
of the sensors during periods of movement. These models did not show significant improvements
when compared with the more straightforward double integration of the linear acceleration data with
drift removal for translational motion estimate. Finally, we present a model based on LSTMs that
combined simultaneously zero-velocity detection with the translational motion of sensors estimate.
This model revealed a lower average error for position tracking than the combination of the previously
referred methodologies.

Keywords: IMU; human motion tracking; machine learning

1. Introduction

Human motion tracking is any procedure that tries to obtain a quantitative or qualitative measure
of human movement. It has seen remarkable progress in recent years and is one of the most relevant
tasks of motion analysis. Examples of quantitative analysis include the measurement of biomechanical
variables such as the angle between joints or parameters that describe the gait of an individual [1,2].

Nowadays, some of the most exciting applications of human motion tracking are medical
evaluation, people monitoring, and activity recognition. The continuous recognition of the human
activity is fundamental to provide healthcare and assistance services to populations that need to
be continuously monitored, such as the elderly or dependent subjects [3]. Furthermore, it can be
used in the telerehabilitation field since it allows the rehabilitation of the patient without constant
monitoring by a clinician as it can be used as a source of detailed information about the movement of
the patient [4].

Sensors 2020, 20, 6383; doi:10.3390/s20216383 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4796-6692
https://orcid.org/0000-0002-3760-2473
http://www.mdpi.com/1424-8220/20/21/6383?type=check_update&version=1
http://dx.doi.org/10.3390/s20216383
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 6383 2 of 21

In recent past, non-visual sensor-based solutions have become a common practice in ambulatory
motion analysis since these are portable, can detect motion continuously—even in outdoor
environments—and have a low computational cost allowing a real-time feedback [1,5]. With recent
advances in microsensor technology, low-power wireless communication and wireless sensor networks,
systems using inertial sensors provide an effective and low-cost solution for motion tracking [2].

Inertial Measurement Units based on Micro-Electro-Mechanical Systems (MEMS-based IMUs)
have become a popular solution for tracking human motion. IMUs are usually constituted by a set of
three accelerometers and three gyroscopes [6]. However, due to the existence of errors such as biases,
scale factor imperfections, drifts, misalignments or random noise, these types of sensors suffer from
accuracy degradation after extended periods of use [7]. Consequently, the calculation of variables as
the velocity, position or orientation through direct integration of the sensor’s signals is an impossible
task since these estimations are unreliable after only a few seconds [6]. Thus, currently, there are
several efforts to mitigate these errors in the context of motion tracking.

Through the merging of data from three mutually orthogonal gyroscopes and three mutually
orthogonal accelerometers of an IMU, it is possible to determine six degrees of freedom (DoF) motion
which includes the calculation of both a 3D position and a 3D orientation. The tracking of translational
motion is substantially more complicated than the orientation tracking. Since double integration is
needed to calculate the displacement of the device, errors rapidly accumulate. A significant problem
of this procedure is related to gravity ‘leaking’. A bad estimate of the IMU orientation leads to an
incorrect removal of the acceleration caused by gravity. This incorrect removal corrupts the calculation
of the velocity and position of the IMU [8,9].

In this paper, we propose the development of Machine Learning (ML) techniques to obtain a
better estimate of the 3D human translational motion using inertial data. To achieve these estimates,
two different challenges were tackled:

1. A classification problem: The identification of stationary moments can be used in zero-velocity
update algorithms allowing a better estimate of position by permitting the correction of the
velocity estimates.

2. A regression problem: After identifying the moments in which the IMU is moving, it is
essential to understand the translational motion performed by the IMU during those periods.
Again, relying solely on the double integration of the acceleration data can lead to wrong
estimations of displacements. Using ML techniques, we aim to obtain more robust estimates of
displacement.

2. Related Work

The application of an inertial navigation system (INS) is the most direct method for estimating
the velocity, displacement, and orientation of an IMU using the measurements provided by its
accelerometers and gyroscopes. However, the amount of noise present in those inertial measurements,
and because the error quickly accumulates, the INS estimates are unreliable after short periods of
time [8].

Traditionally, sensor fusion has been used to obtain more accurate estimates. These algorithms
include the Kalman Filter, the Complementary Filter, or the Gradient Descent Algorithm [10–12].
To improve these sensor fusion methods, more recently, some approaches have been proposed
combining constraints from other information sources. For instance, in [13], Solin et al. (2018) combined
inertial and video data through the use of an Extended Kalman Filter (EKF). The same authors [9]
(2018) used position fixes (a position in time of which the authors are highly confident), loop closures,
zero-velocity updates, velocity pseudo-measurement updates, and barometer readings and fused them
with the model to improve the estimates for the position, velocity, and orientation performed by the
EKF. Inspired by that method, Cortés et al. (2018) [14] proposed a deep learning-based model using a
Convolutional Neural Network (CNN) for estimating the velocity of the IMU. This estimated velocity



Sensors 2020, 20, 6383 3 of 21

was afterward used as a constraint of an EKF instead of the pseudo-measurements presented by Solin
et al. [9], with an increase in performance.

Other approaches fused video and inertial data using neural networks to perform six degrees
of freedom (6-DoF) motion estimate. Some examples of this kind of methodologies are presented
in [15,16]. However, these examples require a higher computational cost as well as a specific set of
conditions for an accurate estimate, such as the fact that the camera needs to be unobstructed.

A type of information that can also be used in sensor fusion algorithms is related to the stationary
periods of the IMUs. By determining the periods in which the IMU is still, it is possible to adjust the
velocity estimation eliminating the drift. This kind of assumption is also interesting for human motion
tracking applications due to the characteristics of the human movement. The identification of the
zero-velocity periods is traditionally conducted using threshold-based methods [17,18]. The problem
with these algorithms is that they are dependent on the application and IMU performance [19].

Some AI methods have also been proposed for identifying these periods. Park et al. (2016) [20]
introduced a methodology for stationary periods identification during human gait using foot-mounted
sensors and applying two Support Vector Machines (SVMs)—one was used for activity recognition
and the other one was used to classify if the foot is on the ground or not. More recently, Wagstaff and
Kelly (2018) [21] proposed a methodology that implements an LSTM (Long-Short-Term Memory
Neural Network) to recognize stationary periods in inertial measurements of a foot-mounted IMU and
adjusting the velocity with an Extended Kalman Filter.

Other methodologies look at the trajectory estimate problem using end-to-end approaches.
These include methods that, using the inertial data, try to estimate both position and orientation of an
IMU [8,22,23]. Others try to use the IMU data to guess its velocity and correct the acceleration readings
or integrate it to produce a displacement estimation [24,25]. These techniques have consistently
obtained better results than simple INS.

Other examples include, for instance, the work developed by Yan et al. [24]: RIDI (Robust IMU
Double Integration) (2018) is an approach which regresses the velocity vector applying an SVM on
inertial data. That velocity is used to correct the accelerometer readings which are integrated twice to
provide a displacement estimate. In [26], Chen et al. proposed IONet (2018), which uses fixed-sized
windows of inertial data to predict the trajectory of the IMU. This way, the input of their neural
network is a vector of inertial data, and the output is a polar vector. The authors presented different
architectures for the deep neural network: a Recurrent Neural Network (RNN), a Convolutional Neural
Network (CNN), a One-Layer Long-Short-Term Memory (LSTM), a Two-Layer LSTM, and a Two-Layer
Bidirectional LSTM (BLSTM). The same authors recently presented L-IONet (2020) [27]. This is a
similar technique, but replaces the used LSTMs with WaveNet [28]. This model allows continuing
to take time dependencies into consideration while improving the training time and reducing the
computational cost.

Feigl et al. (2019) [25] used a windows-based method involving the signal magnitude vector of
the linear acceleration and the angular rate. Several ML-based and deep learning (DL) models were
used to regress the signal magnitude vector of human velocity. These include a Classification and
Regression Tree (CART), a Support Vector Regressor (SVR), and Gaussian Processes. A DL method
was also used applying a CNN combined with a BLSTM.

More recently, Lima et al. (2019) [8] proposed an end-to-end approach that uses data from a
low-cost IMU. They used a neural network that combines both CNN and BLSTM layers to estimate the
trajectory of the IMU. The loss function of the network was adapted to consider both the translational
error and the orientation error. RoNIN (2019) was introduced by Yan et al. [29]. Again, inertial data
from a smartphone IMU are used to estimate position and orientation. Three different architectures
were tested: a 1D version of a Resnet [30], an LSTM, and a Temporal Convolutional Network (TCN) [31].
For the position estimate, the ResNet was trained to predict a translation. LSTM and TCN architectures,
on the other hand, were used to regress instantaneous velocities which were integrated. To estimate



Sensors 2020, 20, 6383 4 of 21

the IMU orientation, the LSTM architecture was used to regress a 2D vector which represents the sin
and the cos values of the heading angle.

Esfahani et al. (2019) [23] presented AbolDeepIO, which used DL to estimate the movement of
a robot. For that purpose, the authors used several LSTM layers to learn features present in the
accelerometer and gyroscopes signals separately. Afterwards, the same authors [22] presented OriNet
(2019). This framework uses gyroscope readings and a deep learning methodology to improve the
orientation quaternion estimate.

All things considered, analyzing the works previously presented, it is possible to conclude that
the majority of the works existent in the area are concentrated in tasks that either do not focus on the
more complex task of tracking human motion or that—when focused on human motion tracking—lack
both movement diversity and data from several body segments.

3. Materials and Methods

The proposed solution for 3D human translational motion estimate using inertial data can be
divided into two parts. Firstly, a sequence of accelerometer and gyroscope measurements is used to
identify the periods in which the IMU is still. In those periods it is assumed that the velocity of the
IMU is zero. The next step consisted in using the inertial data from the motion periods to estimate
translation. This way, it is possible to estimate the full IMU motion both during zero-velocity periods
and motion periods.

3.1. Dataset

All experiments were performed using data from the Human Movement and Ergonomics:
an Industry-Oriented Dataset for Collaborative Robotics [32]. This dataset was designed to simulate
human motion in working conditions in the industry. It contains inertial data collected using a Xsens
MVN Link system (Xsens, Enschede, Netherlands) which comprises 17 IMUs placed on several body
segments. Various trials were conducted with a total of 13 subjects performing activities such as
screwing, untying knots, or carrying loads across a room for a total of 5 h. The participant had to raise
their arms, bend their torso, or crouch to perform the mentioned activities. Each trial consisted in
performing the mentioned activities in a given sequence, chosen between six predefined sequences.
The ground truth was collected with a Qualisys Optical Motion System (Qualisys, Göteborg, Sweden)
composed of 43 reflective markers placed in different body parts, the motion of which was recorded
using 12 Oqus cameras. Video and data from a prototype e-glove from Emphasis Telematics (Emphasis
Telematics, Athens, Greece)—which includes data related to the flexion and pressure of different
fingers—are also provided.

It is important to state that, at the beginning of each trial, the system was calibrated, and the Xsens
world frame was reinitialized to match the Qualisys world frame. The acceleration due to gravity
was already removed from the linear acceleration measurements provided in the dataset, and, in this
way, we are dependent of the orientation estimation conducted by the Xsens MVN Link System and
subsequent gravity removal process.

The authors provided no information regarding the relative placement of both Xsens IMUs and
Qualisys markers. However, analyzing the data provided, it is possible to identify six body placements
in which both inertial data and ground truth 3D position are provided: right and left shoulder, right and
left upper arm and right and left toe (as represented in Figure 1). Considering these labels, it was
considered that the 3D position returned by the Qualisys could be used as ground truth of the position
throughout the time of the IMUs in the same placements.



Sensors 2020, 20, 6383 5 of 21

Figure 1. Xsens Avatar with indication of the six body placements in which both inertial data and
ground truth 3D position are provided, extracted from [33].

3.2. Data Split

To perform the mentioned tasks, only a representative portion of the whole dataset was used due
to the high computational cost that using the entire dataset would carry. The generation of the train
and test sets is described in Figure 2. The data were split in such a way to guarantee the presence
of data from several body segments in both sets. This can increase the generalization ability of the
developed models allowing their application to a higher number of body placements. Additionally,
this split guarantees that data from a participant are only present in the training set or in the test
set. This way, it is possible to ensure that, although the models could learn some particularities of
the participant trials present in the training set, those particularities would not increase the test set
performance. These particularities can be, for instance, specific errors that can happen during the
initialization of the Xsens system that can affect the correct gravity removal or particular placements
of the IMUs relative to the Qualisys markers. This split also secures that data from several trials are
present in both sets.

Figure 2. Train and test split (RSHO, Right Shoulder; LSHO, Left Shoulder; RUPA, Right Upper Arm;
LUPA, Left Upper Arm; RTOE, Right Toe; LTOE, Left Toe).



Sensors 2020, 20, 6383 6 of 21

3.3. Zero-Velocity Detection

The zero-velocity detection problem can be faced as a classification problem in which the goal is
to classify a moment into stopped or moving period.

3.3.1. Automatic Labeling of the Qualisys Data

The first step consisted in using the 3D position provided by the Qualisys motion system
(ground truth position) to create a binary label—which indicates if that period is a stationary or
a motion one. This method was implemented dividing the Qualisys 3D signal into several windows
and evaluating the displacement that occurred inside each window. Given a 3D position window of N
frames, the label of the window was placed in the frame N/2.

The first step of the algorithm is defining a threshold thresh, a “hysteresis term” T, and a window
size N. If the total movement inside the evaluated window is above the specified limit, then it is
considered that the respective body segment is moving. Otherwise, it is admitted that the associated
body segment is stopped. To introduce hysteresis in the algorithm, it was considered that, if the body
segment was stopped, then the movement needed to be T times above the defined threshold to change
its state.

To evaluate if this algorithm was capable of classifying the Qualisys position data as desired,
a randomly selected subset of the dataset was extracted and labeled manually. To perform the manual
labeling, the magnitude of the position vector was visually inspected and marked. Out of the 13
subjects who conducted the trials, the manual labeling was performed on one trial for six patients.
For the selected trial, the labeling was made in each of the six selected placements (Shoulder (right
and left), Upper Arm (right and left), and Toe (right and left)). In total, 36 acquisitions were manually
labeled. Finally, the manual labeling was compared with the automatic labeling. The threshold thresh
and the “hysteresis term” T were defined automatically using the ones that maximized the accuracy of
the zero-velocity detection.

3.3.2. Fixed-Threshold Zero-Velocity Detectors

To understand the importance of using ML methodologies to segment zero-velocity periods,
two different fixed-threshold zero-velocity detectors were used.

A: Stance Hypothesis Optimal Estimation (SHOE) Detector

The SHOE [34] detector uses a window of size N of IMU readings to determine if the IMU in
experiencing movement or if it is stationary:

yk =


1, i f 1

N ∑k+N−1
n=k ( 1

σ2
a
‖an‖2 + 1

σ2
ω
‖ωn‖2) < γ

0, otherwise
(1)

in which an and ωn represent, respectively, the 3D linear acceleration (with the acceleration caused by
gravity already removed) and the 3D angular velocity in the selected window. Each term is divided by
the variance of its measurements, σ2

a and σ2
ω . If the sum of these terms in the selected window divided

by the number of samples N is below the threshold γ, then it is considered that the IMU is stopped,
otherwise it is considered that the IMU is experiencing movement [35].

The threshold γ was selected automatically as the one that maximized the zero-velocity detection
accuracy in the training set.



Sensors 2020, 20, 6383 7 of 21

B: Angular Rate Energy (ARED) Detector

The ARED [34] detector is a binary zero-velocity detector that evaluates the existence of movement
using the angular velocity measured by the gyroscope:

yk =


1, i f 1

N ∑k+N−1
n=k ‖ωn‖2 < γω

0, otherwise
(2)

in which ωn represents the 3D angular velocity. If the sum of the squared norm of the measurements
inside the window of size N is below the threshold γω, then it is considered that the IMU is stopped,
otherwise it is considered that the IMU is experiencing movement [35].

As in the SHOE detector, the threshold, γω was selected automatically as the one that maximized
the zero-velocity detection accuracy in the training set.

3.3.3. ML Methodologies

A: Models

In the next step, different supervised ML classification algorithms were used: a Logistic Regression
(LR), a Support Vector Machine (SVM), a Random Forest (RF), a simple LSTM, and a Six-Layer LSTM
(6-LSTM). In all of them, as output the binary label which represents if the IMU during that period is
experiencing movement or if it stationary was used.

The proposed simple LSTM architecture contained a single LSTM layer with 30 units. This layer
included recurrent dropout of 20%, dropping neurons directly in the recurrent connections to reduce
overfitting. Finally, a densely-connected layer with only one unit and sigmoid activation was added.

The 6-LSTM model used was the one proposed by Wagstaff and Kelly [21]. It contains six LSTM
layers with 80 units per layer. After that, a single densely-connected layer was added to reduce
the output to a 2D problem. Considering the way our output was defined (binary output), this
last layer is substituted by a densely-connected layer with only one unit and sigmoid activation.
Besides, as proposed by the authors, a dropout layer with a rate of 20% was added before the last
fully-connected layer to avoid overfitting.

These LSTM-based models were trained using an Adam optimizer [36] and binary cross-entropy
loss. Similar to the method implemented by Wagstaff and Kelly [21], a learning rate of 5× 10−3

and weight decay of 1× 10−5 were used. A batch size of 32 was used in an attempt to balance both
the memory requirements and the accurate estimation of the error gradient. Early stopping was
implemented to interrupt the training when the validation loss was no longer decreasing over the
course of 20 epochs to reduce the risk of overfitting. Finally, gradient clipping was applied in all the
methods that used LSTM layers to avoid exploding gradients.

B: Features and Cross-Validation

For the LR, SVM, and RF models, several time-domain features were extracted for each time
window of each axis signal: mean, maximum, minimum, sum, standard deviation, quartile 0.25,
quartile 0.75, median, variance, energy, and maximum discrete difference along the time axis.
After extracting these features, pairs of highly correlated features were identified (Pearson’s r > 0.9) in
the training set and removed. These same features were also removed from the test set. The label used
for each window was the state in the middle of it.

For these three classifiers, a group-three-fold cross-validation was performed to optimize
hyperparameters keeping inter-user independence in the validation procedure. The optimization of
the hyperparameters of each model was conducted using Bayesian optimization.

For the LR and SVM models, the features present on the training set were standardized by
removing the mean and scaling to unit variance. The test set features were standardized using the



Sensors 2020, 20, 6383 8 of 21

same parameters. The same schema was used during validation: the validation set in each fold was
standardized using the parameters used to standardize the training set in that fold. Since the RF model
is tree-based, standardization was not applied.

For the LSTM-based models, the raw signal of each component of the linear acceleration and
angular velocity signals were used as input. Again, windows equivalent to the ones used for the
automatic labeling of the Qualisys Data were used. The output is likewise the state in the middle of
the window.

Due to the computational cost of training neural networks, no group-k-fold was implemented.
Instead, for validation purposes, the training set was divided into a training set (composed of seven
randomly selected participants) and a validation set (three participants). The six-channel inertial data
in the training set were standardized, transforming the values to a distribution with mean 0 and a
standard deviation of 1. The same parameters were used to rescale the test set. During validation,
the same transformation was applied to the validation set using the parameters used to standardize
the train set.

3.4. Translational Motion Estimates between Stationary Periods

The outputs of the classification algorithms introduced in the previous section were then used to
improve the displacement estimates. This way, it was assumed that when a moment is classified as
stopped, then the IMU velocity during that period is zero and no change occurs on its position.

To calculate the changes in position that occurred during the periods of movements two different
approaches were used: the first one used a mathematical double integration combined with a linear
drift removal and the second one used ML methodologies to introduce a smart double integration.

3.4.1. Double Integration with Linear Drift Removal

As mentioned previously, to calculate the displacements between zero-velocity moments, double
integration was performed. Additionally, linear drift removal was executed.

The accumulated drift was calculated as the difference between the velocity estimation at the
end of a moving period and at the start of that period. That accumulated drift during each moving
period was assumed to be accumulated linearly. That way, the respective drift was removed from each
sample. To calculate the corrected position, the drift fixed velocity was integrated.

The velocity correction can be expressed by:

drift rate =
ve − vb
e− b

(3)

vcorrected,ti
= vti − drift rate× (ti − tb), f or ti = tb, ...te (4)

in which ve represents the velocity at the end of a movement. vb is the velocity at the beginning of
a movement. tb and te represent the time of the last and first sample of the movement respectively.
The corrected velocity for each movement—that occurs between b and e—is then calculated subtracting
the drift rate at the respective time.

3.4.2. ML Methodologies to Perform Double Integration

In this approach, different LSTM-based methods were tested in order to estimate the displacement
that took place in a period of movement using as input the inertial data from that period. The main
idea behind each model is to assemble a Two-Layer LSTM in which each layer performs an integration
that also accounts for the errors present in the linear acceleration signal, and, therefore, can compensate
them reaching a better displacement estimate. A representation of this idea is presented in Figure 3.



Sensors 2020, 20, 6383 9 of 21

Figure 3. “Smart” double integration by a two-Layer LSTM (Acceleration[i], linear acceleration
at instant i; ∆Velocity[i], velocity change at instant i; ∆Position, displacement at instant i;
LSTM, Long-Short-Term Memory Network Layer).

A: Warm-Start with “Integrative Weights”

The first applied method consisted of a Two-Layer LSTM combined with an “integrative
initialization”. An overview of the architecture of this approach is represented in Figure 4.
This “integrative initialization” means that the neural network weights were initialized in such a way
that, without any training, the network would simulate a double integration. Such an initialization
makes intuitive sense in the way that the network would start its training already knowing the
mathematical operation that it should conduct. This way, during the training procedure, the model
would only learn how to account for the errors present in the acceleration data that affect the estimate
produced by the double integration operation. The performance of a deep neural model is much reliant
on the effective initialization of its parameters, and a smart initialization strategy could improve the
performance of the model [37].

This idea is similar to the one existent in transfer learning approaches. In these approaches,
the weights from a previous model (that can even be trained on a different domain) are used to
initialize the weights from the current model allowing to conduct what is known as “warm start” that
corresponds to a smart initialization. In this case, the weights are not from a previous model but the
idea of using a smart initialization is the same.

Figure 4. Representation of the warm-Start with “integrative” weights methodology—example for
the x-axis.

To initialize the weights as desired, the LSTM equations used to determine the candidate cell state
and the output were firstly modified. By considering only the example for the first layer, the idea is
to use the acceleration as input and to use the cell state to save the velocity in each timestep. In the
second layer, the velocity works as input, and the cell state saves the previous position. This way,



Sensors 2020, 20, 6383 10 of 21

and assuming that the initial velocity and positions are zero, the output of the first layer is the velocity
in each timestep and the output of the second layer is the position in each timestep.

To conduct this analytic weight initialization, the network was simplified. The hyperbolic tangent
activation functions of each LSTM block were transformed into linear functions and the weights of the
forget, input, and output gates were randomly initialized to close to zero. It is crucial to guarantee
symmetry breaking when initializing these weights. If all the weights were initialized to 0 or to the
same values, symmetry would exist, and the weight updates during backpropagation might not be
effective enough, leading to a poor learning process [38]. This way, the weights of the gates were
randomly initialized to different values between −10−6 and 10−6. The biases of these gates were
initialized to positive values that would guarantee that all the information would pass through the
gates setting the sigmoid function to a value close to 1.

Relatively to the weights and biases related to the cell state, the wc was defined as a matrix
containing the sampling period (that multiplies by the current input and is represented by dt) and a
value close to zero (that multiplies by the previous output). bc is also initialized to with values between
−10−6 and 10−6.

This way, the transformed LSTM equations can be approximated as:

c̃t = [0, dt]× [ht−1, xt]
T + bc = at × dt (5)

ct = ft × ct−1 + it × c̃t = 1× vt−1 + 1× at × dt = vt−1 + at × dt (6)

ht = ot × ct = 1× vt−1 + at× dt = vt (7)

in which at represents the acceleration input of the current timestep and vt−1 is the velocity of the
previous timestep.

Looking at Equations (6) and (7), it is possible to understand that the cell state (ct) and the output
(ht) both represent the velocity in the current timestep. The same weights were used in the second
LSTM layer that is responsible for integrating the velocity into position.

The models were trained using the accelerations of a moving period in each axis as input and the
displacement in the respective axis as output. This way, the acceleration of a certain moving period
on the y-axis was used as input, and the displacement on the same period on the y-axis was used as
output. Information from all the axes was used to train a single model.

After the Two-Layer LSTM, a densely connected layer with no activation was added to reduce the
dimensionality of the output to 1D. Again, the weights of this dense layer were initialized, maintaining
the purpose of the warm start of the previous layer simulating a double mathematical integration.

B: Warm-Start with “Pre-Trained Weights”

The second approach was very similar to the previous one, as described in Figure 5. The goal
was also to perform a warm-start to a Two-Layer LSTM model in such a manner that the network,
without any training, would resemble a double mathematical integration.

However, in this approach, no modifications were introduced in the LSTM equations, and the
weights initialization was not performed manually. This allows maintaining the non-linear activation
functions that in the previous approach were replaced by linear functions (Equations (6) and (7)).

In the present case, two different ML models were trained: firstly, a One-Layer LSTM followed by
a densely connected layer with no activation was trained to learn how to perform a simple integration.
This means that the input of the model was the acceleration in a single axis, and its output was
the velocity estimated by simple integration. Inertial data from the three-axis was used to train
this model. This way, it was expected that this first model would learn how to perform a simple
mathematical integration.

Afterwards, the second ML model, a Two-Layer LSTM model (with each LSTM layer followed by
a densely connected layer with no activation) was initialized with a warm start using the previously



Sensors 2020, 20, 6383 11 of 21

trained weights. This means that each LSTM layer weights were initialized with the final weights of
the firstly trained One-Layer LSTM model. Again, it was expected that this warm start would provide
a starting point to the neural network in such a manner that the network would start its training
already knowing how to perform a double mathematical integration.

Figure 5. Representation of the warm-Start with “pre-trained” weights methodology—example for
the x-axis.

Once more, the model was trained using accelerations of a moving period in each axis as input
and the displacement in the same axis as output. Information from all the axes was used in the
same model.

Another version of this approach was also tested. It included the training of an equal model
(One-Layer LSTM + densely connected layer with no activation) with the single-axis linear acceleration
as input. However, instead of the velocity calculated through a simple integration, the output used for
the first model was the drift corrected velocity (calculated with simple integration and corrected using
the drift correction described in Section 3.4.1). The weights from this model were then used to initialize
the first layer (LSTM + densely connected layer) of the second ML model. In theory, this should
provide the neural network a starting point at which it already knows how to perform an integration
from acceleration to velocity with the benefit of removing the drift. The weights used in the second
layer of this version were the weights used in both layers of the previous version. The “drift removed
weights” were not used in the second layer since that particular correction (drift removal) is specific of
the integration from acceleration to velocity.

C: No Customized Initialization

The third approach used no warm-start. The neural network structure is the same as the used in
the previously presented methodologies: a Two-Layer LSTM followed by a densely connected layer,
as represented in Figure 6.

However, in this approach, different inputs and outputs from the ones used in the previous
approaches were experimented. The inputs utilized were different combinations of the 3D linear
accelerations, 3D angular velocity, and 3D position estimated by double integration. This means
that three different models were trained: the first one using the linear acceleration in the three axes
as input, the second using the 3D linear acceleration and the 3D angular velocity as input, and the
third one using the 3D linear acceleration, the 3D angular velocity, and the 3D estimated position
(through double integration) as inputs. All these models were trained to predict the 3D displacement.



Sensors 2020, 20, 6383 12 of 21

Figure 6. Neural network architecture with no type of warm start for three-axis displacement estimate.

D: Common Experimental Methodology

All the above-explained models were trained using an Adam optimizer [36] and mean squared
error (MSE) loss. As with the methods used in the previous section, a learning rate of 5 × 10−3,
and weight decay of 1× 10−5 were applied. In these experiments, a batch size of 1 was used due to the
different sized inputs.

The same split as described in Figure 2 was applied. The training set was then split with
the data from seven patients for training and the data from the other three patients for validation.
Early stopping was also carried out to interrupt the training when the validation loss was no longer
decreasing throughout 20 epochs to reduce the risk of overfitting. Finally, gradient clipping was
applied to avoid exploding gradients.

The selection of the moving periods was conducted using the reference from the classification
models. This data selection means that only the data from moving periods determined by the ground
truth was used to train and evaluate the models mentioned above. Consequently, the output was the
displacement that occurred during that period. This way, imagining a moving period of 200 samples,
the input, depending on the model, is composed of the inertial data during that period. The output
also contains 200 samples. In the output, each timestep represents the displacement that happened
since the beginning of that moving period.

3.5. Simultaneous Zero Velocity Detection and Translational Motion Estimate

The focus of this section is the development of a model that integrates both zero-velocity detection
and displacement estimates for periods of movement simultaneously. Thus, an LSTM-based stacked
neural network is proposed. This neural network is presented in Figure 7.

Figure 7. Stacked neural network for simultaneous classification and regression.



Sensors 2020, 20, 6383 13 of 21

The first part of the network is composed of an LSTM layer with 30 units and a densely connected
layer to identify the timesteps with zero-velocity. This forces the model to extract this information
from the data which can be regarded as a feature. After, the output of that layer is concatenated with
the inertial data input. This way, the input of the following layers is composed of inertial data of each
timestep and its labeling. The model is composed of two extra LSTM with 30 units each. Afterwards,
a dropout layer with a dropout rate of 0.25 was used to avoid overfitting. The final output (3D position)
is calculated with a densely connected layer that reduces the output to 3D.

In the methodologies presented in Section 3.4, the inputs of the models are the inertial
measurements from periods classified as periods of motion. In this method, distinctively from the last
ones, the inputs used are composed by the inertial data of an entire trial. This input contains inertial
data from periods of movement and of zero-velocity. The outputs include the displacement in each
axis from the beginning of the trial. This displacement is calculated by subtracting the 3D ground truth
position at the beginning of the trial from the 3D ground truth position in each timestep.

This stacked neural network was built to identify moving/stopped moments and estimate the
displacement that occurs during a data collection trial. To achieve this result, the loss function of
the neural network was customized so that, during the training process, it took into consideration,
simultaneously, the classification error and the regression error.

This way, the loss function (L) for a trial with N samples can be defined as:

L(ycl , ŷcl , yreg, ŷreg) = (1− α)× LBinary(ycl , ŷcl) + α× LMSE(yreg, ŷreg) =

(1− α)×
(
− 1

N

N−1

∑
i=0

ycl × log(p(ŷcl)) + (1− ycl)× log(1− p(ŷcl))

)
+

+α×
(

1
N

N−1

∑
i=0

(yreg − ŷreg)
2

) (8)

in which ycl represents the ground truth zero-velocity labeling and ŷcl is the respective model estimate.
p(ŷcl) represents the probability of the IMU having velocity zero in that timestep. yreg symbolizes the
translation’s ground truth and ŷreg is the model’s displacement estimate. α represents a manually set
weight: that allows adjusting the importance of the classification and regression steps.

This model was trained using an Adam optimizer [36] with a learning rate of 5 × 10−3,
weight decay of 1× 10−5, and batch size 1. The same split as described in Figure 2 was applied.
From the ten patients present in the train set, data from seven were used for training, and the data
from the other three were used for validation. Early stopping was conducted to stop the training when
the validation loss was not decreasing throughout 20 epochs.

4. Results

4.1. Zero-Velocity Detection

4.1.1. Automatic Labeling of the Qualisys Data

The threshold thresh was defined as 1 cm, and the window size N as 30 samples since these were
the values that optimized the results of the automatic labeling. This means that in each window of
30 samples—which corresponds to a window of 0.25 s considering the 120 Hz sampling rate—if the
movement is above 1 cm, then it is considered that the body segment is moving. In other words, if the
average velocity in that window is above 0.04 m/s, then it is considered that the body segment is
moving. To introduce hysteresis, the value T was defined as 3. This implies that, if the body segment
was previously at rest, then the threshold is elevated to 3 cm.

The results of the comparison of automatic labeling with manual labeling are presented in Table 1.
The positive class was considered to be the “stopped” state.



Sensors 2020, 20, 6383 14 of 21

Table 1. Results of the automatic labeling when compared with the manual labeling (RSHO, Right
Shoulder; LSHO, Left Shoulder; RUPA, Right Upper Arm; LUPA, Left Upper Arm; RTOE, Right Toe;
LTOE, Left Toe).

Placement Accuracy Precision Recall

RSHO 0.9564 ± 0.0036 0.9722 ± 0.0126 0.9471 ± 0.0126
LSHO 0.9375 ± 0.0187 0.9499 ± 0.0264 0.9345 ± 0.0264
RUPA 0.9134 ± 0.0590 0.9290 ± 0.0333 0.9107 ± 0.0333
LUPA 0.9469 ± 0.0151 0.9691 ± 0.0166 0.9359 ± 0.0166
RTOE 0.8907 ± 0.0270 0.9487 ± 0.0221 0.9126 ± 0.0221
LTOE 0.8881 ± 0.0358 0.9306 ± 0.0365 0.9268 ± 0.0365

Total 0.9222 ± 0.0415 0.9499 ± 0.0376 0.9279 ± 0.0290

First, it is essential to consider that manually identifying the stationary and movement periods
using the position signal is a difficult task. Secondly, it is important to remind that this manual
segmentation only acts as a term of comparison and that the automatic labeling algorithm allows
identifying the periods in which the change in position is smaller than a predefined threshold.
This allows accurately stating that, if the velocity of the movement in a period is small, then one
considers that the IMU and associated body segment are stopped.

Overall, the results suggest that the developed algorithm is an adequate method to perform the
labeling of the 3D placements, and that the generated labels can, therefore, be used as ground truth for
the subsequently developed supervised machine learning models.

4.1.2. Zero-Velocity Detectors

The accuracy of the different developed classifiers for performing zero-velocity detection is
presented in Figure 8.

Figure 8. Accuracy of the different used classifiers (SHOE, Stance Hypothesis Optimal Estimation;
ARED, Angular Rate Energy; Log-R, Logistic Regression; SVM, Support Vector Machine; RF, Random
Forest; Dense, Densely Connected Neural Network; LSTM, Single Layer LSTM; CNN + LSTM,
Convolutional Layers + LSTM Layers).



Sensors 2020, 20, 6383 15 of 21

Analyzing the results, it is possible to conclude that all the chosen models can be successful in
differentiating moments of movement from stationary moments.

Comparing the fixed threshold methods with the ML-based methods, it is possible to observe
that the ML methodologies were capable of obtaining a slightly higher accuracy in the segmentation of
zero-velocity periods (except the logistic regression model).

The application of a median filter as a post-processing step on the ML methods also slightly
improves the accuracy of all the models. Analyzing the test set results, only the Logistic Regression
model has an accuracy lower than 0.94. The rest of the models have a very similar performance.

This level of accuracy must be studied considering the level of error that exists in the production
of the ground truth. These results look good enough considering the error intrinsic to the annotation.
Additionally, we believe that, considering the final goal of this paper (which is to improve the
translational motion estimate), this amount of error is not relevant in the calculation of the
displacement considering that the data from the periods in which the errors occur is associated
with a small displacement.

The model with the best accuracy in the test set was the Random Forest model with median
filtering. An example of this classification on a trial is presented in Figure 9.

Figure 9. Example of a trial classification using the Random Forest classifier with and without median
filtering (blue background, true positives (correctly identified stopped periods); gray background,
true negatives (correctly identified periods of movement), purple background, false positives (wrongly
labeled as stopped periods); red background, false negatives (wrongly labeled as moving periods)).

4.2. Translational Motion Estimates between Stationary Periods

To evaluate the translational motion estimates conducted using the different zero-velocity
detectors and the different regressors, three different metrics were used to assess the displacement
error in each axis: RMSE (root-mean-squared error), MAE (mean absolute error) and R2.

RMSE can be represented by:

RMSE =

√√√√ 1
N

N−1

∑
i=0

(pi − p̂i)2 (9)

To allow a more straightforward interpretation of the results, the MAE of the displacement in
each axis was also evaluated:

MAE =
1
N

N−1

∑
i=0
|(pi − p̂i)| (10)



Sensors 2020, 20, 6383 16 of 21

In both equations, pi represents the true position in a given axis in the timestep i and p̂i is the
estimated position. Since, at the beginning of each trial, the IMUs coordinate frame was reinitialized to
match the Qualisys world frame, to compare pi and p̂i, no rotation needs to be applied. RMSE and
MAE were calculated for the x-, y-, and z-axis. It was considered that the starting point of all the trials
was the point of coordinates [0,0,0].

It is also important to understand the average prediction error of each model in the 3D trajectory.
With that purpose, the absolute trajectory error (ATE) of the position was also assessed. The absolute
trajectory error of the position can be regarded as a 3D RMSE. This way, ATE is defined as [39]:

ATE =

√√√√ 1
N

N−1

∑
i=0
‖∆pi‖2 (11)

in which ‖∆pi‖ represents the Euclidean distance between the estimate and the ground truth:

‖∆pi‖ = d(pi, p̂i) =
√
(p(x,i) − p̂(x,i))

2 + (p(y,i) − p̂(y,i))
2 + (p(z,i) − p̂(z,i))

2 (12)

Additionally a 3D MAE was also calculated:

MAE(∆pi) =
1
N

N−1

∑
i=0
‖∆pi‖ (13)

The calculation of RMSE and MAE provides a single, easy to compare value. However, it is
essential to mention that these metrics are time-sensitive: if a position estimate mistake happens at
the beginning of a trial, then the error tends to be higher then if the same error takes place as the end
of the trial [39]. Besides, it is also important to keep in mind that the RMSE gives higher weight to
more significant errors [40]. All the metrics were evaluated individually for each trial and, therefore,
the average values between the test trials are presented with the respective standard deviations.

Another interesting regression performance metric is R2, which allows assessing how close the
predicted variable fits the ground truth. In this case, R2 can be calculated as [41]:

R2 =
Var(p̂)
Var(p)

= Correlation(p̂, p)2 (14)

This index allows calculating the proportion of the variance in p that the developed model can
explain. If the developed models predict perfectly the desired variable, then R2 is 1 [41].

The results of some of the different implemented methods are presented in Table 2. These include
the results of the combination of different zero-velocity classifiers with different regressors. The results
of the stacked neural network which performs both tasks (classification and regression simultaneously)
are also presented.

Firstly, it is important to analyze the importance of the application of the zero-velocity updates.
There is a significant improvement in applying the zero-velocity update using the different classifiers
compared with the simple double integration of the signals without any correction. The use of drift
correction also improves RMSE and MAE of all the trajectory estimates with a zero-velocity update.
R2 also increases in the cases in which drift correction is applied.

The model which stopped moments identification leads to a trajectory estimate with a lower error
and a higher R2 is the Six-Layer LSTM model combined with double integration and drift correction.
In this case, the drift correction also improves this estimate on all axes. However, all the classifiers
combined with double integration as regressor possess a similar performance between them before
and after the drift correction.



Sensors 2020, 20, 6383 17 of 21

Table 2. MAE, RMSE, and R2 of the displacement estimate in each axis of the full trial 3D displacement
estimate using the different classification and regression models

Zero-Velocity
Classifier Regressor Error px py pz || p||

None Double
Integration

RMSE (m) 28.71 ± 24.55 22.75 ± 22.03 6.60 ± 5.61 23.82 ± 16.35
MAE (m) 22.45 ± 19.98 17.30 ± 17.25 5.25 ± 4.40 32.41 ± 22.80

R2 0.15 ± 0.13 0.13 ± 0.15 0.06 ± 0.11 0.12 ± 0.08

Random
Forest

Double
Integration

RMSE (m) 1.41 ± 1.23 0.81 ± 0.62 0.69 ± 0.37 1.99 ± 1.10
MAE (m) 1.25 ± 1.18 0.65 ± 0.45 0.57 ± 0.33 1.77 ± 1.0

R2 0.64 ± 0.26 0.45 ± 0.26 0.20 ± 0.24 0.11 ± 0.14

Random
Forest

Double
Integration +
Drift Correction

RMSE (m) 0.60 ± 0.39 0.56 ± 0.49 0.37 ± 0.23 1.02 ± 0.45
MAE (m) 0.51 ± 0.37 0.47 ± 0.44 0.31 ± 0.20 0.92 ± 0.43

R2 0.85 ± 0.13 0.63 ± 0.32 0.39 ± 0.31 0.35 ± 0.31

6-LSTM Double
Integration

RMSE (m) 1.25 ± 1.00 0.94 ± 0.78 0.68 ± 0.40 1.90 ± 1.04
MAE (m) 1.08 ± 0.95 0.75 ± 0.65 0.57 ± 0.34 1.67 ± 0.98

R2 0.62 ± 0.24 0.43 ± 0.32 0.25 ± 0.28 0.09 ± 0.11

6-LSTM
Double
Integration +
Drift Correction

RMSE (m) 0.50 ± 0.31 0.51 ± 0.49 0.42 ± 0.21 0.93 ± 0.44
MAE (m) 0.42 ± 0.28 0.43 ± 0.43 0.35 ± 0.18 0.83 ± 0.39

R2 0.86 ± 0.12 0.63 ± 0.30 0.31 ± 0.28 0.43 ± 0.13

6-LSTM A—“Integrative”
RMSE (m) 1.63 ± 1.64 1.58 ± 2.37 1.01 ± 0.89 2.68 ± 2.85
MAE (m) 1.44 ± 1.54 1.31 ± 2.20 0.85 ± 0.80 2.38 ± 2.65

R2 0.57 ± 0.28 0.42 ± 0.31 0.21 ± 0.27 0.09 ± 0.10

6-LSTM
B—“Pre-trained”
(w/drift
removal)

RMSE (m) 0.87 ± 0.59 0.95 ± 0.84 0.31 ± 0.29 1.43 ± 0.91
MAE (m) 0.71 ± 0.55 0.78 ± 0.72 0.24 ± 0.25 1.80 ± 1.29

R2 0.68 ± 0.24 0.51 ± 0.32 0.38 ± 0.33 0.26 ± 0.30

6-LSTM C—No
initialization

RMSE (m) 1.29 ± 0.75 0.52 ± 0.2 0.35 ± 0.16 1.47 ± 0.72
MAE (m) 1.09 ± 0.66 0.42 ± 0.19 0.29 ± 0.14 1.30 ± 0.65

R2 0.62 ± 0.28 0.17 ± 0.16 0.09 ± 0.08 0.23 ± 0.24

Stacked Neural Network (α = 0.5)
RMSE (m) 0.81 ± 0.16 0.44 ± 0.06 0.19 ± 0.09 0.95 ± 0.15
MAE (m) 0.62 ± 0.13 0.37 ± 0.07 0.15 ± 0.06 0.78 ± 0.14

R2 0.57 ± 0.21 0.11 ± 0.10 0.12 ± 0.08 0.40 ± 0.22

Stacked Neural Network (α = 0.8)
RMSE (m) 0.78 ± 0.21 0.44 ± 0.06 0.19 ± 0.08 0.93 ± 0.21
MAE (m) 0.59 ± 0.13 0.36 ± 0.06 0.15 ± 0.05 0.78 ± 0.14

R2 0.50 ± 0.22 0.12 ± 0.13 0.19 ± 0.12 0.39 ± 0.26

Stacked Neural Network (α = 1)
RMSE (m) 0.54 ± 0.18 0.42 ± 0.07 0.20 ± 0.08 0.73 ± 0.17
MAE (m) 0.44 ± 0.14 0.35 ± 0.07 0.15 ± 0.05 0.64 ± 0.14

R2 0.68 ± 0.24 0.51 ± 0.32 0.38 ± 0.33 0.26 ± 0.30

Another interesting point is to note that the displacement estimates possess a lower average error
in the z-axis. Provided that the IMUs are not always under high linear acceleration (which is true
for human movement), then these are very accurate in terms of vertical measurements. In contrast,
IMUs fail in horizontal measurements because there is no way to compensate the gyro drift around
global Z (without proper magnetometer corrections). To remove gravity from the accelerometer
readings, one needs to know the orientation of the sensor relative to Earth. Since both accelerometers
and gyroscopes are affected by errors, the estimation of that orientation is never totally accurate.
This inaccurate orientation estimation—that in this case was previously conducted by the Xsens
MVN Link system—leads to errors during the gravity removal process which will affect less the
measurements in the vertical axis than on the non-vertical axes. Besides, it is also important to consider
that less movement occurs in the z-axis (the subjects major movements occur in the horizontal plane)
and thus the removal of the gravity may also be optimized in axes in which less motion occurs.

To compare the different regressors, the same 6-LSTM classifier was used to conduct zero-velocity
detection. Afterwards, the different regression models were used to estimate the displacement between



Sensors 2020, 20, 6383 18 of 21

zero-velocity periods. Starting by comparing the double integration with drift correction results with
the ML regressors, one can conclude that these could not improve the overall displacement estimate
during an entire trial.

By comparing the different regressors with each other, it is possible to observe that the “pre-trained”
model achieves a lower average error on the x-axis while the “no initialization” model achieves a
better performance on the y-axis. On the z-axis and for the 3D displacement estimate, the performance
of these models is similar.

The stacked neural network methodology was experimented using three different α values for the
loss function (Equation (8))—0.5, 0.8 and 1. A α value of 0.5 gives similar weight to the classification
loss and to the regression loss. A α value of 0.8 gives higher weight to the regression loss. A α value of
1 means that the loss function is equivalent to the mean squared error loss function.

By comparing the stacked neural networks with different α in the loss function, it is possible to
see that the results are similar for the three methods. The network in which α was set to 1 achieves
better results on the x-axis average error than the other ones, which results in a lower error in the 3D
displacement estimate.

The stacked neural networks method allows to train networks that are capable of simultaneously
detecting zero-velocity periods and translation estimate. This way, it is probable that, during the
training of the neural network, the model is capable of understanding what are the detected stationary
periods that will support an improved translation estimate. This way, some errors that could exist on
the zero-velocity “ground truth” will be annulled by the other goal of the neural network that is to
find a better translation estimate (in the cases in which α > 0.5, the translation estimate is the major
objective of the neural network).

5. Conclusions

This work focused on providing an improvement in the position estimate using inertial data
of different body segments (to which an IMU is attached) when a subject is performing several
movements using inertial data. For this purpose, two objectives were defined: (1) zero-velocity
detection for identifying periods in which the IMU is stationary; and (2) regression of translations that
took place in periods of movement. Lastly, an ML model that was capable of accomplishing both tasks
(zero-velocity detection and displacement estimate) was also evaluated.

The developed zero-velocity detectors provided an apparent accurate detection of IMU stationary
periods which seems to have allowed constraining the error that accumulates during the integration of
the noisy inertial measurements. The application of these detectors to correct the velocity estimation
allowed an enhanced tracking when compared with the simple double integration of the accelerometer
data. It is important to state that the improvement of this detection, as well as an enhanced definition
of the ground truth, would allow a better tracking. The removal of the linearly estimated drift between
zero-velocity moments provided an additional improvement.

Relatively to the regression models, used to estimate translations between zero-velocity moments,
no significant improvements in comparison with more straightforward methods—as the double
integration with drift removal—were achieved. The approach that combined both zero-velocity
detection and translations estimate showed promising results.

The majority of the work existent in this area is dedicated to different variants of the problem
tackled in this project. Some authors use inertial data to track subjects walking and estimate
the trajectory of their path or their velocity. Regarding zero-velocity detection, the existent work
concentrates into zero-velocity detection during gait using IMUs placed on the foot, lacking both
movement diversity and data from several body segments. Others concentrate on evaluating 6-DoF
pose estimate for tracking in areas as robotics and automation and, therefore, do not focus on the more
complex task of tracking human motion. Besides, to the best of our knowledge, there is not any type of
similar work developed using the same dataset which constitutes an additional difficulty for any kind



Sensors 2020, 20, 6383 19 of 21

of comparison. This absence of work in the area made the comparison of the developed methods with
prior techniques difficult.

This work provides several research opportunities. First, further optimization must be performed
in all the developed models. Zero-velocity detection was performed with high accuracy, although it
can be improved with more exploration and optimization. The regression estimate presented results
with lower performances and, in this way, future work can be focused on this area. Some examples
of work that can potentially be performed on this part following the methods implemented in this
project include: initializing the weights of an LSTM-based model using simultaneously data from the
three-axis to provide a warm start to the network and the ability to capture information at the same
time from inertial data from different axes; conducting warm start for the stacked neural network
methodology—particularly on the first layer responsible for detecting stationary periods using the
weights optimized during in the zero-velocity detection LSTM classifier. The work should also be
focused in improving and solving the capacity to adapt to negative values presented by the approach
that combined simultaneous zero-velocity detection and translations estimate as well as filtering the
results obtained in that section.

Other future work includes the validation of the developed methods in different datasets.
Although the used dataset presents wide motion variety and data from several body segments,
it is vital to understand if the developed models can generalize to other parts of the body, different
IMUs, and movements of different nature. The final goal should be to achieve a model that can improve
human motion tracking being applied to data from any IMU that is placed in any body segment during
the execution of any type of movement.

Author Contributions: Conceptualization, P.M.S.R., A.C.M., P.H.S., and J.S.C.; methodology, P.M.S.R., A.C.M.,
P.H.S., and J.S.C.; investigation, P.M.S.R.; resources, P.M.S.R., A.C.M., P.H.S., and J.S.C.; writing—original draft
preparation, P.M.S.R.; writing—review and editing, A.C.M., P.H.S., and J.S.C.; supervision, A.C.M., P.H.S.,
and J.S.C.; and project administration, A.C.M. and P.H.S. All authors have read and agreed to the published
version of the manuscript.

Funding: The project TAMI-Transparent Artificial Medical Intelligence (NORTE-01-0247-FEDER-045905) partially
funding this work is co-financed by ERDF - European Regional Fund through the North Portugal Regional
Operational Program-NORTE 2020 and by the Portuguese Foundation for Science and Technology-FCT under the
CMU-Portugal International Partnership.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ATE Absolute Trajectory Error
CNN Convolutional Neural Network
EKF Extended Kalman Filter
IMU Inertial Measurement Unit
INS Inertial Navigation System
LR Logistic Regression
LSTM Long short-term memory
MAE Mean Average Error
ML Machine Learning
RMSE Root-mean-square error
RF Random Forest
SVM Support Vector Machine

References

1. Lopez-Nava, I.H.; Angelica, M.M. Wearable Inertial Sensors for Human Motion Analysis: A review.
IEEE Sens. J. 2016, PP, 7821–7834. [CrossRef]

http://dx.doi.org/10.1109/JSEN.2016.2609392


Sensors 2020, 20, 6383 20 of 21

2. Avci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity Recognition Using Inertial
Sensing for Healthcare, Wellbeing and Sports Applications: A Survey. In Proceedings of the 23th International
Conference on Architecture of Computing Systems, Hannover, Germany, 22–23 February 2010; pp. 167–176.

3. Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical Human
Activity Recognition Using Wearable Sensors. Sensors 2015, 15, 31314–31338. [CrossRef] [PubMed]

4. Morreale, P.A. Wireless sensor network applications in urban telehealth. In Proceedings of the 21st
International Conference on Advanced Information Networking and Applications Workshops (AINAW’07),
Niagara Falls, ON, Canada, 21–23 May 2007; pp. 810–814. [CrossRef]

5. Winters, J.M.; Wang, Y.; Winters, J.M. Wearable Sensors and Telerehabilitation. IEEE Eng. Med. Biol. Mag.
2003, 22, 56–65. [CrossRef] [PubMed]

6. Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of motion tracking
methods based on inertial sensors: A focus on upper limb human motion. Sensors 2017, 17, 1257. [CrossRef]

7. Groves, P.D. Navigation using inertial sensors [Tutorial]. IEEE Aerosp. Electron. Syst. Mag. 2015, 30, 42–69.
[CrossRef]

8. Silva do Monte Lima, J.P.; Uchiyama, H.; Taniguchi, R.I. End-to-End Learning Framework for IMU-Based
6-DOF Odometry. Sensors 2019, 19, 3777. [CrossRef]

9. Solin, A.; Cortes, S.; Rahtu, E.; Kannala, J. Inertial odometry on handheld smartphones. In Proceedings of
the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018;
pp. 1–5.

10. Simon, D. Kalman filtering. Embed. Syst. Program. 2001, 14, 72–79.
11. Gui, P.; Tang, L.; Mukhopadhyay, S. MEMS based IMU for tilting measurement: Comparison of

complementary and kalman filter based data fusion. In Proceedings of the 2015 IEEE 10th Conference on
Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–17 June 2015; pp. 2004–2009.

12. Madgwick, S.O.; Harrison, A.J.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient
descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics,
Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7.

13. Solin, A.; Cortes, S.; Rahtu, E.; Kannala, J. PIVO: Probabilistic inertial-visual odometry for occlusion-robust
navigation. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV),
Lake Tahoe, NV, USA, 12–15 March 2018; pp. 616–625.

14. Cortés, S.; Solin, A.; Kannala, J. Deep learning based speed estimation for constraining strapdown inertial
navigation on smartphones. In Proceedings of the 2018 IEEE 28th International Workshop on Machine
Learning for Signal Processing (MLSP), Aalborg, Denmark, 17–20 September 2018; pp. 1–6.

15. Clark, R.; Wang, S.; Wen, H.; Markham, A.; Trigoni, N. Vinet: Visual-inertial odometry as a
sequence-to-sequence learning problem. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, San Francisco, CA, USA, 4–9 February 2017.

16. Chen, C.; Rosa, S.; Miao, Y.; Lu, C.X.; Wu, W.; Markham, A.; Trigoni, N. Selective sensor fusion for
neural visual-inertial odometry. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 15–21 June 2019; pp. 10542–10551.

17. Li, X.F.; Mao, Y.L.; Xie, L.; Chen, J.B.; Song, C.L. Applications of zero-velocity detector and Kalman filter
in zero velocity update for inertial navigation system. In Proceedings of the 2014 IEEE Chinese Guidance,
Navigation and Control Conference, Yantai, China, 8–10 August 2014; pp. 1760–1763.

18. Li, L.; Pan, Y.; Lee, J.K.; Ren, C.; Liu, Y.; Grejner-Brzezinska, D.A.; Toth, C.K. Cart-mounted geolocation
system for unexploded ordnance with adaptive ZUPT assistance. IEEE Trans. Instrum. Meas. 2012, 61,
974–979. [CrossRef]

19. Yao, Y.; Xu, X.; Xu, X. An IMM-aided ZUPT methodology for an INS/DVL integrated navigation system.
Sensors 2017, 17, 2030.

20. Park, S.Y.; Ju, H.; Park, C.G. Stance phase detection of multiple actions for military drill using foot-mounted
IMU. Sensors 2016, 14, 16.

21. Wagstaff, B.; Kelly, J. LSTM-based zero-velocity detection for robust inertial navigation. In Proceedings
of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France,
24–27 September 2018; pp. 1–8.

22. Esfahani, M.A.; Wang, H.; Wu, K.; Yuan, S. OriNet: Robust 3-D Orientation Estimation With a Single
Particular IMU. IEEE Robot. Autom. Lett. 2019, 5, 399–406. [CrossRef]

http://dx.doi.org/10.3390/s151229858
http://www.ncbi.nlm.nih.gov/pubmed/26690450
http://dx.doi.org/10.1109/AINAW.2007.375
http://dx.doi.org/10.1109/MEMB.2003.1213627
http://www.ncbi.nlm.nih.gov/pubmed/12845820
http://dx.doi.org/10.3390/s17061257
http://dx.doi.org/10.1109/MAES.2014.130191
http://dx.doi.org/10.3390/s19173777
http://dx.doi.org/10.1109/TIM.2011.2179820
http://dx.doi.org/10.1109/LRA.2019.2959507


Sensors 2020, 20, 6383 21 of 21

23. Esfahani, M.A.; Wang, H.; Wu, K.; Yuan, S. AbolDeepIO: A novel deep inertial odometry network for
autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1941–1950. [CrossRef]

24. Yan, H.; Shan, Q.; Furukawa, Y. RIDI: Robust IMU double integration. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 621–636.

25. Feigl, T.; Kram, S.; Woller, P.; Siddiqui, R.H.; Philippsen, M.; Mutschler, C. A Bidirectional LSTM for
Estimating Dynamic Human Velocities from a Single IMU. In Proceedings of the 2019 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October
2019; pp. 1–8.

26. Chen, C.; Lu, X.; Markham, A.; Trigoni, N. Ionet: Learning to cure the curse of drift in inertial odometry.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
8–14 September 2018.

27. Chen, C.; Zhao, P.; Lu, C.X.; Wang, W.; Markham, A.; Trigoni, N. Deep Learning based Pedestrian Inertial
Navigation: Methods, Dataset and On-Device Inference. arXiv 2020, arXiv:2001.04061.

28. Oord, A.V.D.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.;
Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499.

29. Yan, H.; Herath, S.; Furukawa, Y. RoNIN: Robust Neural Inertial Navigation in the Wild: Benchmark,
Evaluations, and New Methods. arXiv 2019, arXiv:1905.12853.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

31. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for
sequence modeling. arXiv 2018, arXiv:1803.01271.

32. Maurice, P.; Malaisé, A.; Amiot, C.; Paris, N.; Richard, G.J.; Rochel, O.; Ivaldi, S. Human movement and
ergonomics: An industry-oriented dataset for collaborative robotics. Int. J. Robot. Res. 2019, 38, 1529–1537.
[CrossRef]

33. Karatsidis, A.; Bellusci, G.; Schepers, H.M.; De Zee, M.; Andersen, M.S.; Veltink, P.H. Estimation of ground
reaction forces and moments during gait using only inertial motion capture. Sensors 2017, 17, 75. [CrossRef]

34. Skog, I.; Handel, P.; Nilsson, J.O.; Rantakokko, J. Zero-velocity detection—An algorithm evaluation.
IEEE Trans. Biomed. Eng. 2010, 57, 2657–2666. [CrossRef]

35. Wagstaff, B.; Peretroukhin, V.; Kelly, J. Robust Data-Driven Zero-Velocity Detection for Foot-Mounted
Inertial Navigation. IEEE Sens. J. 2019, 20, 957–967. [CrossRef]

36. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
37. Buduma, N.; Locascio, N. Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence

Algorithms; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017.
38. Patterson, J.; Gibson, A. Deep Learning: A Practitioner’s Approach; O’Reilly Media, Inc.: Sebastopol, CA,

USA, 2017.
39. Zhang, Z.; Scaramuzza, D. A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry.

In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, 1–5 October 2018; pp. 7244–7251.

40. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D
SLAM systems. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 573–580.

41. Lunt, M. Introduction to statistical modelling: Linear regression. Rheumatology 2015, 54, 1137–1140.
[CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TITS.2019.2909064
http://dx.doi.org/10.1177/0278364919882089
http://dx.doi.org/10.3390/s17010075
http://dx.doi.org/10.1109/TBME.2010.2060723
http://dx.doi.org/10.1109/JSEN.2019.2944412
http://dx.doi.org/10.1093/rheumatology/ket146
http://www.ncbi.nlm.nih.gov/pubmed/23594471
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Materials and Methods
	Dataset
	Data Split
	Zero-Velocity Detection
	Automatic Labeling of the Qualisys Data
	Fixed-Threshold Zero-Velocity Detectors
	ML Methodologies

	Translational Motion Estimates between Stationary Periods
	Double Integration with Linear Drift Removal
	ML Methodologies to Perform Double Integration

	Simultaneous Zero Velocity Detection and Translational Motion Estimate

	Results
	Zero-Velocity Detection
	Automatic Labeling of the Qualisys Data
	Zero-Velocity Detectors

	Translational Motion Estimates between Stationary Periods

	Conclusions
	References

