
 www.movella.com

 Movella DOT

iOS SDK Documentation

Document XD0202P, Revision A, July 2023

 www.movella.com

Revision Date By Changes

A July 2023 ERI, MRA Movella DOT Rebranding

© 2005-2023, Movella Technologies B.V. All rights reserved. Information in this document is subject to change
without notice. Movella, MVN, MotionGrid, MTi, MTi-G, MTx, MTw, Awinda, Movella DOT and KiC are registered
trademarks or trademarks of Movella Technologies B.V. and/or its parent, subsidiaries and/or affiliates in The
Netherlands, the USA and/or other countries. All other trademarks are the property of their respective owners.

 www.movella.com

Table of Contents

1 Introduction .. 7

2 Getting Started with SDK .. 8

2.1 Platform Requirements .. 8

2.2 Example code .. 8

2.3 SDK Changelogs ... 8

2.4 Import SDK Framework ... 8

3 Classes and methods ... 9

3.1 DotConnectionManager ... 9

3.2 DotConnectionDelegate ... 9

3.3 DotDevice ... 9
3.3.1 Properties .. 9
3.3.2 Methods ... 10

3.4 DotPlotData .. 11

3.5 DotDefine ... 11

3.6 DotUtils .. 12

3.7 DotLog ... 12

3.8 DotReconnectManager ... 12

3.9 DotSyncManager ... 12

3.10 DotRecording .. 12

3.11 DotDevicePool ... 13

4 SDK Usage with Examples ... 14

4.1 Recommended workflow ... 14

4.2 Debugging Flag ... 15

4.3 Reconnection Setting ... 15
4.3.1 Enable Reconnect Manager ... 15
4.3.2 Bind the sensor ... 15

4.4 BLE Scan .. 15

4.5 Connect ... 16

4.6 Initialization .. 16

4.7 Filter profile .. 16

4.8 Output rate... 17

4.9 Synchronization .. 18
4.9.1 Get sync status ... 19
4.9.2 Start sync ... 19

 www.movella.com

4.9.3 Get sync results ... 19
4.9.4 Stop sync ... 19

4.10 Real-time streaming .. 20
4.10.1 Set measurement mode ... 20
4.10.2 Start measurement and set data block ... 20
4.10.3 Stop measurement .. 21
4.10.4 Data Logging ... 21
4.10.5 High fidelity modes .. 21
4.10.6 Data conversions ... 21

4.11 Heading reset ... 23
4.11.1 Check if heading reset is supported .. 23
4.11.2 Heading reset status .. 23
4.11.3 Reset heading ... 24
4.11.4 Revert heading .. 24

4.12 Recording ... 25
4.12.1 Get flash information .. 25
4.12.2 Start recording .. 26
4.12.3 Get recording status ... 26
4.12.4 Stop recording ... 27
4.12.5 Get recording time ... 27
4.12.6 Erase flash .. 27

4.13 Recording data export .. 28
4.13.1 Set export data format ... 28
4.13.2 Get export file information .. 29
4.13.3 Set export file list .. 29
4.13.4 Start export .. 30
4.13.5 Stop export ... 30
4.13.6 Update export status .. 30

4.14 Firmware update ... 31
4.14.1 Set the delegate .. 31
4.14.2 Check firmware update ... 31
4.14.3 Check firmware downgrade ... 32
4.14.4 Start OTA ... 32
4.14.5 Stop OTA .. 33
4.14.6 Clear the cache file .. 33

4.15 Mag field mapper .. 34
4.15.1 Integrate MFM SDK framework .. 34
4.15.2 Implementation MFM .. 35

4.16 Other functions ... 35
4.16.1 Read RSSI .. 35
4.16.2 Identify .. 35
4.16.3 Power saving ... 36
4.16.4 Button callback .. 36
4.16.5 Power on options ... 36

5 Appendix ... 37

5.1 Real-time streaming modes .. 37
5.1.1 Extended (Quaternion) ... 37

 www.movella.com

5.1.2 Complete (Quaternion) ... 37
5.1.3 Orientation (Quaternion)... 37
5.1.4 Extended (Euler).. 37
5.1.5 Complete (Euler) ... 38
5.1.6 Orientation (Euler) ... 38
5.1.7 Free acceleration ... 38
5.1.8 High fidelity (with mag) .. 38
5.1.9 High fidelity .. 38
5.1.10 Delta quantities (with mag) ... 39
5.1.11 Delta quantities ... 39
5.1.12 Rate quantities (with mag) .. 39
5.1.13 Rate quantities .. 39
5.1.14 Custom mode 1 ... 39
5.1.15 Custom mode 2 ... 40
5.1.16 Custom mode 3 ... 40
5.1.17 Custom mode 4 ... 40
5.1.18 Custom mode 5 ... 40

List of Tables
Table 1: Software supported platforms ... 8
Table 2: Methods in DotConnectionManager .. 9
Table 3: Methods in DotConnectionDelegate ... 9
Table 4: Properties of DotDevice ... 9
Table 5: Methods in DotDevice ... 10
Table 6: Notifications of DotDefine .. 11
Table 7: Methods in DotUtils .. 12
Table 8: Methods in DotLog ... 12
Table 9: Methods in DotReconnectManager .. 12
Table 10: Methods in DotSyncManager .. 12
Table 11: Properties in DotRecording .. 13
Table 12: Methods in DotDevicePool ... 13
Table 13: Filter profile index .. 17
Table 14: Output rates .. 17
Table 15: Heading status ... 24
Table 16: Flash status ... 26
Table 17: Recording status .. 26
Table 18: Export data quantities ... 29
Table 19: Export status ... 30
Table 20: Extended (Quaternion).. 37
Table 21: Complete (Quaternion) ... 37
Table 22: Orientation (Quaternion) ... 37
Table 23: Extended (Euler) .. 37
Table 24: Complete (Euler) .. 38
Table 25: Orientation (Euler) ... 38
Table 26: Free acceleration .. 38
Table 27: High fidelity (with mag) .. 38
Table 28: High fidelity ... 38
Table 29: Delta quantities (with mag) ... 39
Table 30: Delta quantities.. 39

 www.movella.com

Table 31: Rate quantities (with mag) .. 39
Table 32: Rate quantities .. 39
Table 33: Custom mode 1 ... 39
Table 34: Custom mode 2 ... 40
Table 35: Custom mode 3 ... 40
Table 36: Custom mode 4 ... 40

List of Figures
Figure 1: Movella DOT Mobile SDK Architecture ... 7
Figure 2: Movella DOT iOS SDK Workflow .. 14
Figure 3: Synchronization workflow .. 18
Figure 4: Workflow to start and stop real-time streaming .. 20
Figure 5: Workflow for heading reset .. 23
Figure 6: Workflow to start and stop recording ... 25
Figure 7: Workflow to export recording data .. 28

 www.movella.com

1 Introduction

The Movella DOT iOS SDK is a software development kit for iOS applications on iPhones

and iPads. iOS developers can use this SDK to build their applications to scan and connect

the sensors, get data in real-time streaming or recording, as well as other functions.

This document mainly addresses SDK usage with example codes. Before getting started

with the SDK, it is advised to read Movella DOT User Manual first to understand the basic

functions of the sensor.

Figure 1: Movella DOT Mobile SDK Architecture

The SDK provides classes for developers to facilitate easier integration into specific

application.

Figure 1 shows the SDK components and architecture. It contains 3 main models to

manage the state of device, data payload types and data output. It also contains different

https://www.movella.com/hubfs/Xsens%20DOT%20User%20Manual-3.pdf

 www.movella.com

classes1 available for usage. The data processor library is integrated in SDK to process the

data from firmware. Other libraries like sensor fusion and calibration libraries are running

on Movella DOT firmware.

1 Not every class can be new or referenced.

 www.movella.com

2 Getting Started with SDK

2.1 Platform Requirements

Table 1 shows the iOS version and Bluetooth requirements for the mobile devices.

Table 1: Software supported platforms

Platform requirements

• iOS 13.0 and above
• Bluetooth

o Best performance with BLE 5.2 DLE2 supported.
o Compatible with Bluetooth 4.2

2.2 Example code

Refer to this project on GitHub for the iOS example code of Movella DOT SDK:

https://github.com/MovellaTechnologies/dot_example_ios

2.3 SDK Changelogs
Refer to this BASE article for the iOS SDK changelogs.

2.4 Import SDK Framework
The required development tool is Xcode. The following steps describe how to import the

SDK into your Xcode project.

1. Import the whole MovellaDotSDK.framework package into the target project.

2. Make sure MovellaDotSDK.framework is included in Target → General →

Framework, Libraries, and Embedded Content, and the Embed property is
‘Embed & Sign’

3. Under Target → Build Settings, Enable Bitcode is NO

4. Add these to Info.plist

• NSBluetoothAlwaysUsageDescription

• NSBluetoothPeripheralUsageDescription

2 Data Length Extension

https://github.com/MovellaTechnologies/dot_example_ios
https://movella.my.site.com/XsensKnowledgebase/s/article/Moevlla-DOT-Release-Notes-and-Change-Logs

 www.movella.com

3 Classes and methods

3.1 DotConnectionManager

This class manages the BLE connection of DOT sensors.

Table 2: Methods in DotConnectionManager

Method Description

+ (void)scan Scan the sensors

+ (void)stopScan Stop scanning

+ (void)connect:(DotDevice *)device Connect sensors

+ (void)disconnect:(DotDevice *)device Disconnect sensors

+ (BOOL)managerStateIsPoweredOn Check Bluetooth is enabled or not

+ (DotManagerState)managerState Get Bluetooth status

+ (void)setConnectionDelegate:(nullable
id<DotConnectionDelegate>)delegate

Set the connection delegate

3.2 DotConnectionDelegate

The protocol of DotConnectionManager. You can use these methods to get all the scanning

and connection status.

Table 3: Methods in DotConnectionDelegate

Method Description

- (void)onManagerStateUpdate:
(DotManagerState)managerState

Return DOT BLE state

- (void)onScanCompleted Return if the scanning is completed

- (void)onDiscoverDevice:
(DotDevice *_Nonnull)device

Return the discovered device

- (void)onDeviceConnectSucceeded:
(DotDevice *_Nonnull)device

Return if the connection is success

- (void)onDeviceConnectFailed:
(DotDevice *_Nonnull)device

Return if the connection fails

- (void)onDeviceDisconnected:

(DotDevice *_Nonnull)device

Return if the device is disconnected

3.3 DotDevice

DotDevice represents an DOT device object, including basic information and operations,

data measurement and data logging.

3.3.1 Properties

Table 4: Properties of DotDevice

Property Description

uuid Bluetooth device UUID

macAddress Device mac address

RSSI Bluetooth signal indication

Battery Device battery object

firmwareVersion Device firmware version

plotMeasureEnable Measurement state of real-time streaming

plotMeasureMode Measurement modes of real-time streaming

plotLogEnable Data logging state

 www.movella.com

isSupportHeadingReset A flag to know if this firmware supports heading reset function.

headingStatus Heading reset status

^headingResetResult Heading reset result block

timeoutXMinutes Power saving time in advertisement mode – minute. Valid value: 0~30

timeoutXSeconds Power saving time in advertisement mode – second. Valid value: 0~60

timeoutYMinutes Power saving time in connection mode – minute. Valid value: 0~30

timeoutYSeconds Power saving time in connection mode – minute. Valid value: 0~60

totalSpace The total available internal storage space for recording. Unit is byte.

usedSpace The used internal storage space of recording. Unit is byte.

recording The recording object.

exportDataFormat To set the export data format of recording files.

exportLogEnable Set to enable/disable the file logging function when exporting recording
data.

outputRate Output rate. The unit is Hz:

1, 4, 10, 12, 15, 20, 30, 60 and 120 (120 Hz only for recording mode)

filterIndex The filter profile index
0: General filter profile
1: Dynamic filter profile

3.3.2 Methods

Table 5: Methods in DotDevice

Method Description

- (void)setDidParsePlotDataBlock:(void (^
_Nullable)(DotPlotData * _Nonnull
plotData))block

Block of data measurement

- (void)setDeviceName:(NSString *)name Set device tag name

- (void)startIdentifying Identify sensor

- (void)powerOff Power off sensor

- (BOOL)startHeadingReset Start heading reset. “NO” means this feature is
not supported with current the firmware.

- (BOOL)startHeadingRevert Start heading revert. “NO” means this feature
is not supported with current the firmware.

- (BOOL)getRecordingStatus Get sensor’s recording state. “NO” means this
feature is not supported with current the
firmware.

- (BOOL)startRecording:(UInt16)
recordingTime

Start recording. “NO” means this feature is not
supported with current the firmware.

- (BOOL)stopRecording Stop recording. “NO” means this feature is not
supported with current the firmware.

- (BOOL)getFlashInfo Get information of recording flash. “NO” means
this feature is not supported with current the
firmware.

- (void)setFlashInfoDoneBlock:(void
(^_Nullable)(XSFlashInfoStatus status))block

Get flash information done block

- (BOOL)getRecordingTime Get recording time. “NO” means this feature is
not supported with current the firmware.

- (BOOL)eraseData; Request to erase all the recording data space.
“NO” means this feature is not supported with
current the firmware.

- (void)setEraseDataDoneBlock:(void
(^_Nullable)(int success))block

Erase data done block

- (BOOL)getExportFileInfo Get information of the export recording file.
“NO” means this feature is not supported with

current the firmware.

 www.movella.com

- (void)setExportFileInfoDone:(void
(^_Nullable)(BOOL success))block

Export file information done block

- (BOOL)startExportFileData Start export file data. “NO” means this feature
is not supported with current the firmware.

- (BOOL)stopExportFileData Stop export file data. “NO” means this feature

is not supported with current the firmware.

- (void)setDidParseExportFileDataBlock:(void
(^ _Nullable)(DotPlotData * _Nonnull
plotData))block

Data block of exported data

- (BOOL)isInitialized The flag that sensor has been initialized after
connection.

- (BOOL)isSynced The flag of sensor synced.

- (void)setOutputRate:(int)outputRate
filterIndex:(int)filterIndex

Set the output rate and filter index.

- (void)readRSSI:(void
(^_Nullable)(NSNumber *signal))block

Read the RSSI of sensor

- (void)setDidButtonCallbackBlock:(void (^
_Nullable)(int timestamp))block

The button callback block.

- (BOOL)isProductV2 “YES” means the hardware is Movella DOT v2.

- (BOOL)isProductV1 “YES” means the hardware is Movella DOT v1.

- (BOOL)isUsbPowerOnEnabled “YES” means the sensor will power on with USB
plugin. This function is only available in v2.

- (BOOL)enableUsbPowerOn:(BOOL) isEnable Enable the sensor to power on by USB plugin.

This function is only available in v2.

3.4 DotPlotData
DotData contains all the measurement data. When set setPlotMeasureEnable to YES, the

block will get the data from setDidParsePlotDataBlock.

Refer to DotPlotData.h for more information.

3.5 DotDefine
DotDefine is a common define of SDK. It has notifications and other defines. Please

import it in your Xcode project.

Table 6: Notifications of DotDefine

Notification Description

kDotNotificationManagerStateDidUpdate Bluetooth state update

kDotNotificationDeviceConnectSucceeded Sensor connection success notification

kDotNotificationDeviceConnectFailed Sensor connection failure notification

kDotNotificationDeviceDidDisconnect Sensor disconnection notification

kDotNotificationDeviceBatteryDidUpdate Battery level update

kDotNotificationDeviceFirmwareVersionDidRead Firmware version read success

kDotNotificationDeviceNameDidRead Tag name read success

kDotNotificationDeviceMacAddressDidRead Mac address read success

kDotNotificationDeviceConnectionDidStart Sensor starts connecting notification

Refer to DotDefine.h for more information.

 www.movella.com

3.6 DotUtils

The utils class contains the available conversion methods.

Table 7: Methods in DotUtils

Method Description

+ (void)quatToEuler:(double [_Nullable])eular
WithW:(float)quatW withX:(float)quatX
withY:(float)quatY withZ:(float)quatZ

Convert quaternion to Euler angles

3.7 DotLog
Enable DotLog when you want to get debug information. Note that you need to disable it

in released apps.

Table 8: Methods in DotLog

Method Description

+ (void)setLogEnable:(BOOL)enable Enable/disable debug mode

+ (BOOL)isLogEnable Get debug mode state

3.8 DotReconnectManager
When setEnable is set to YES, the sensor will automatically reconnect every second if the

connection is lost.

Table 9: Methods in DotReconnectManager

Method Description

+ (void)setEnable:(BOOL)enable Enable/disable reconnection

+ (BOOL)enable Get current reconnection state

3.9 DotSyncManager

This class is the synchronization manager. All sensors will be time-synced with each other

to a common time base after synchronization. Refer to section 3.3.4 in Movella DOT User

Manual for more information. The root node in the iOS SDK is always the first sensor

connected. It will take the sensors about 10 seconds to finish the sync period, so you can

reconnect the sensors after that.

Table 10: Methods in DotSyncManager

Method Description

+ (void)startSync:(NSArray<DotDevice *> *)devices
result:(DotSyncResultBolck) resultBlock

Start synchronization

+ (void)stopSync:(NSArray<DotDevice *> *)devices Stop synchronization

3.10 DotRecording

This class has all the properties of recording, including flashInfoStatus, recordingStatus,

recordingdata, recordingTime etc. DotDevice has a property of recording, you can control

it after DotDevice connected.

https://www.movella.com/hubfs/Xsens%20DOT%20User%20Manual-3.pdf
https://www.movella.com/hubfs/Xsens%20DOT%20User%20Manual-3.pdf

 www.movella.com

Table 11: Properties in DotRecording

Property Description

flashInfoStatus The status of flash information, refer to table?

recordingStatus The status of recording, refer to table?

^updateRecordingStatus Recording status update block

^updateExportingStatus Export file data status update block

recordingDate Recording start time UTC, the unit is second

recordingTime The total recording time of a timed recording. For

normal recording, the value is 0xFFFF.

remainingTime The remaining time of a timed recording.

files The recording file list

exportFileList Export file list

^exportFileDone Export file done block

3.11 DotDevicePool
This class manages the reconnection behavior of sensors. When reconnection is enabled,

you need to bind the sensor to activate the reconnection function after connecting a sensor.

Unbind it after disconnecting the sensor, otherwise a reconnection will be initialized.

Table 12: Methods in DotDevicePool

Method Description

+ (BOOL)bindDevice:(DotDevice *)device Bind a sensor

+ (void)unbindDevice:(DotDevice *)device Unbind a sensor

+ (NSArray <DotDevice *>*)allBoundDevices All the bound devices

 www.movella.com

4 SDK Usage with Examples

4.1 Recommended workflow

The iOS SDK code flow is shown in Figure 2. This flow process can be used by iOS

developers after importing SDK into iOS project.

Figure 2: Movella DOT iOS SDK Workflow

Begin with starting BLE scan with DotConnectionManager scan. Developers can get the

DotDevice object using onDiscoverDevice method in DotConnectionDelegate. DotDevice

object manages the all the behaviors of the sensor.

Use DotConnectionManager connect:device to connect the sensors. The connection status

is updated by DotConnectionDelegate. If the connection process fails, the SDK will check

whether the reconnection feature is enabled. Reconnection will start automatically if

enabled.

Each step is further explained in the following sections with example code.

 www.movella.com

4.2 Debugging Flag

This is a static function and can be used to enable/disable the debug messages. If it is set

to true, the SDK will output debug message with this tag – ‘MovellaDotSDK’.
[DotLog setLogEnable:YES];

4.3 Reconnection Setting

Follow these steps to configure the reconnection setting of DOT. If set to true and bound,

the SDK will start to reconnect the sensor(s) automatically when the connection is lost.

4.3.1 Enable Reconnect Manager

Enable the reconnect manager in viewController:

[DotReconnectManager setEnable:YES];

4.3.2 Bind the sensor

Add bindDevice after connecting and unbindDevice after disconnecting.

if(device.state != CBPeripheralStateConnected)

{

 [DotConnectionManager connect:device];

 [DotDevicePool bindDevice:device];

}

else

{

 [DotConnectionManager disconnect:device];

 [DotDevicePool unbindDevice:device];

}

4.4 BLE Scan

Before starting the scanning, you must ensure that Bluetooth is on and the iPhone is

powered on and available.

if(![DotConnectionManager managerStateIsPoweredOn])

{

 NSLog(@"Please enable bluetoooth first");

 return;

}

[DotConnectionManager scan];

Set the delegate:

- (void)viewWillAppear:(BOOL)animated

{

 [super viewWillAppear:animated];

 [DotConnectionManager setConnectionDelegate:self];

 xxx

}

The DotConnectionDelegate has all status of scanning result.

 www.movella.com

4.5 Connect
Declare an DotDevice object or DotDevice array.

@property (strong, nonatomic) NSMutableArray *deviceList;

In onDiscoverDevice:(DotDevice *)device of DotConnectionDelegate, add all devices to

deviceList.

- (void)onDiscoverDevice:(DotDevice *)device

{

 NSInteger index = [self.deviceList indexOfObject:device];

 if(index == NSNotFound)

 {

 if(![self.deviceList containsObject:device])

 {

 [self.deviceList addObject:device];

 }

 }

}

Use DotConnectionManager to connect one or multiple sensors.
DotDevice *DotDevice = self.deviceList[indexPath.row];

DotConnectionManager connect:DotDevice];

Refer to DotDevice.h for more information.

4.6 Initialization

After the sensor connection, an initialization process will start automatically to enable BLE

notifications and obtain basic sensor information, including the hardware and firmware

version, MAC address, tag name, battery status, synchronization status, filter profile,

output rate etc.

isInitialized method will tell user whether a sensor has been initialized after connection.

Make sure isInitialized is YES before proceeding further, such as synchronization and

measurement.

4.7 Filter profile

After the initialization is done, you can get or set the current filter profile for the

measurement. Refer to section 3.2 in the Movella DOT User Manual for more information

about filter profiles.

Get current filter profile that is applied in the measurement:
DotDevice.filterIndex

https://www.movella.com/hubfs/Xsens%20DOT%20User%20Manual-3.pdf

 www.movella.com

The filterIndex is the index of the filter profiles.

Table 13: Filter profile index

Index Filter profile Description

0 General This filter profile is the default setting. It assumes moderate dynamics
and a homogeneous magnetic field. External magnetic distortion is
considered relatively short.

1 Dynamic This filter profile assumes fast and jerky motions that last for a short

time. The dynamic filter uses the magnetometer for stabilization of the
heading and assumes very short magnetic distortions. Typical
applications are when sensors are applied on persons for sports such
as sprinting.

Set a new filter profile:
- (void)setOutputRate:(int)outputRate filterIndex:(int)filterIndex;

4.8 Output rate

After the initialization is done, you can get or set the output rate for the measurement.

Table 14 shows the available output rates during measurements.

Table 14: Output rates

Measurement Output rates

Real-time streaming 1 Hz, 4 Hz, 10 Hz, 12 Hz, 15 Hz,20 Hz, 30 Hz, 60 Hz

Recording 1 Hz, 4 Hz, 10 Hz, 12 Hz, 15 Hz,20 Hz, 30 Hz, 60 Hz, 120 Hz

Get current output rate that is applied in the measurement:
DotDevice.outputRate

Set a new output rate for the measurement:
- (void)setOutputRate:(int)outputRate filterIndex:(int)filterIndex;

 www.movella.com

4.9 Synchronization

All sensors will be time-synced with each other to a common time base after

synchronization. Refer to section 3.3.2 in Movella DOT User Manual for more information.

Set the output rate and filter profile before starting the synchronization. Since the sensor

will enter measurement mode right after the sync succeeds so it’s not possible to change

it after sync. Figure 3 below shows the recommended workflow for synchronization.

Figure 3: Synchronization workflow

https://www.movella.com/hubfs/Xsens%20DOT%20User%20Manual-3.pdf

 www.movella.com

4.9.1 Get sync status

Before starting the synchronization, check the synchronization status of the target sensors

and make sure they are not synced. Stop the synced sensor before starting a new

synchronization to prevent error status.

Get sync status with isSynced method.

4.9.2 Start sync

Use startSync method in DotSyncManager to start the synchronization. The first param of

startSync is a DotDevice List and second param is a callback block. The first object in the

List will be the root sensor while others will be the scanners.

SDK will disconnect the sensor after starting the synchronization. The synchronization of 5

sensors would take about 12 seconds while SDK will try to reconnect after 10 seconds.

4.9.3 Get sync results

After a successful reconnection, SDK will check the sync result to see if the sync is

successful or not. The block param is an array object that includes the DotDevice

macAddress and sync result.

#import <MovellaDotSdk/DotSyncManager.h>

…

DotSyncResultBolck block = ^(NSArray *array)

{

};

[DotSyncManager startSync:self.DotDeviceList result:block];

Once the sync succeeds, sensor will enter measurement mode. You can then choose to

do real-time streaming or recording with the synced sensors.

If the sensor is not reconnected within 26 seconds, the sync is considered as failed. The

sync is also failed if the result shows fail. In that case, SDK will stop those sensors that

have been successfully synced. Refer to this BASE article for more tips about

synchronization.

4.9.4 Stop sync

Stop sync is required after the measurement. Otherwise the sensor will stay in

measurement mode and the battery will run out soon.

Use stopSync method in DotSyncManager to stop synchronization. The param is the

synced DotDevice list.

[DotSyncManager stopSync:boundDevices];

https://base.xsens.com/s/article/Movella-DOT-Synchronization-Explained?language=en_US

 www.movella.com

4.10 Real-time streaming

In real-time streaming, motion data is streamed and logged to the central device via a

constant Bluetooth connection. You can set measurement mode, start/stop measurement

and log the data to csv files with the SDK.

Figure 4 shows the workflow to start and stop real-time streaming.

Figure 4: Workflow to start and stop real-time streaming

DotDevice can report sensor data in real-time streaming and the callback is

setDidParsePlotDataBlock block. To use this, notify the sensor to enter the measurement

mode, then start the measurement by following the steps below.

4.10.1 Set measurement mode

You can get all the measurement modes of real-time streaming in this enum:

XSBleDevicePayloadMode. 17 measurement modes are available for now. Refer to the

Appendix for data outputs of different modes. Section 4.2 in Movella DOT User Manual also

gives detailed explanation about output values.

[DotDevce setPlotMeasureMode:

XSBleDevicePayloadInertialHighFidelityWithMag];

4.10.2 Start measurement and set data block

[DotDevce setPlotMeasureEnable:YES];

[_DotDevice setDidParsePlotDataBlock:^(DotPlotData * _Nonnull

plotData) {

https://www.movella.com/hubfs/Xsens%20DOT%20User%20Manual-3.pdf

 www.movella.com

double acc0 = plotData.acc0;

double acc1 = plotData.acc1;

double acc2 = plotData.acc2;

 …

 }];

Then you can get the data output according to different measurement modes.

4.10.3 Stop measurement

[DotDevce setPlotMeasureEnable:NO];

Refer to DotPlotData.h for more information.

4.10.4 Data Logging

Call setPlotLogEnable method in DotDevice to enable or disable the data logging during

real-time streaming.

[DotDevce setPlotLogEnable:YES]

The logging data is saved in ‘Logs’ folder under NSDocumentDirectory as csv files.

4.10.5 High fidelity modes

In high fidelity mode, higher frequency (800 Hz) information is preserved with lower output

data rate (60 Hz), even with transient data loss. There are 3 measurement modes

containing high fidelity inertial data in the SDK:

• XSBleDevicePayloadInertialHighFidelityWithMag

• XSBleDevicePayloadHighFidelityNoMag

• XSBleDevicePayloadCustomMode4

To parse the high fidelity inertial data to to delta_q, delta_v or calibrated angular velocity

and acceleration, you need to select the above measurement modes with high fidelity

inertial data. After starting the measurement, you can get the values with read the

properties of acc0-acc2, gyr0-gyr2, dQ0-dQ3, dV0-dV2 from DotData object.

4.10.6 Data conversions

Data conversion functions are provided in Movella DOT SDK. Developers can make use of

these conversion functions to get the measurement quantities as required in their

applications.

Convert quaternion to Euler angles

quatToEuler method is provided in DotUtils class to convert quaternion values to Euler

angles.
DotPlotData *plotData;

[DotDevice setDidParsePlotDataBlock:^(DotPlotData * _Nonnull plotData)

{

 plotData = plotData;

}];

 www.movella.com

double eular[3];

[DotUtils quatToEuler:eular WithW:plotData.quatW withX:plotData.quatX

withY:plotData.quatY withZ:plotData.quatZ];

Calculation of free acceleration

You can get the free acceleration from orientation and acceleration as mentioned in this

BASE article.

In real-time streaming, getCalFreeAcc function is provided to help you omit the

mathematical calculations.

As this function requires both orientation (in quaternion) and acceleration as input it can

currently only be used with XSBleDevicePayloadCustomMode4. Custom mode 4 is the only

mode that can output these two quantities at the same time.
Double *calFreeAcc = [plotData getCalFreeAcc];

//calFreeAcc[0] is free acceleration along the x-axis

//calFreeAcc[1] is free acceleration along the y-axis

//calFreeAcc[1] is free acceleration along the z-axis

The default gravity is 9.8127 m/s2. You can set a custom gravity vector (for example 9.82

m/s2) by defining its value in the following way:
double localGravity=9.82

[double *calFreeAcc = [plotData getCalFreeAcc:localGravity]

https://base.xsens.com/s/article/Calculating-Free-Acceleration?language=en_US

 www.movella.com

4.11 Heading reset

Heading reset function allows user to align heading outputs among all sensors and with

the object they are connected to. Performing a heading reset will determine the orientation

and free acceleration data with respect to a different earth-fixed local frame (L’), which

defines the L’ frame by setting the X-axis of L’ frame while maintaining the Z-axis along

the vertical. It computes L’ such that Yaw becomes 0 deg.

The heading reset function must be executed during real-time streaming and with

measurement mode including orientation output. The reset orientation is maintained

between measurement start/stop and connection/disconnection but will be lost after a

device reboot.

Figure 5 shows the workflow to do the heading reset.

Figure 5: Workflow for heading reset

Follow the steps below to implement the heading reset function.

4.11.1 Check if heading reset is supported

Check if current firmware of the sensor support heading reset feature or not.
DotDevice.isSupportHeadingReset

4.11.2 Heading reset status

Get the heading reset status of the sensor.
DotDevice.headingStatus

 www.movella.com

Table 15: Heading status

Heading reset status Value Description

XSHeadingStatusXrmHeading 1 Heading has been reset

XSHeadingStatusXrmDefaultAlignment 7 Heading has been reverted to default status

XSHeadingStatusXrmNone 8 Default status

4.11.3 Reset heading

Align the sensor heading to 0 degree. Only reset the sensor which is reverted or in default

status (status = 7 or 8).
[DotDevice startHeadingReset]

4.11.4 Revert heading

Revert heading to the default value. Note that only revert the sensor which is reset (status

= 1).
[DotDevice startHeadingReset]

After reset the heading, a revert is required before conducting a new reset.

 www.movella.com

4.12 Recording

In recording mode, motion data is stored in the sensor internal storage and can be exported

for post processing. Bluetooth connection is not required once the recording is started.

With the SDK, you can start/stop recording, set timed recording and export recording data.

Figure 6 shows the recommended workflow to start and stop recording with iOS SDK.

Figure 6: Workflow to start and stop recording

4.12.1 Get flash information

Flash information refers to recording flash size and its usage. The flash size that can be

used for recording accounts for about 90% of the total size (16 MB for v1 sensor, 64MB

for v2 sensor). So firstly, we need to get the available flash space and the remaining

recording time before start recording.

DotDevice.totalSpace and DotDevice.usedSpce can only be initialized after calling

getFlashInfo.

[DotDevice getFlashInfo];

 www.movella.com

This can be used to update the flash status:
[DotDevice setFlashInfoDoneBlock:^(XSFlashInfoStatus status) { }];

Table 16: Flash status

Flash status Description

XSFlashInfoIsReady Recording flash space is ready for recording.

XSFlashInfoIsFull Recording flash space is full (≥ 90% the whole size).

XSFlashInfoIsUninitialized Recording flash space is uninitialized or invalid.

Note that uninitialized or invalid flash means that the current recording flash space is not

compatible with the flash structure supported in this firmware. Erase the flash space to

reset the structure.

4.12.2 Start recording

You can start recording or set a timed recording with the parameter of startRecording.

Set the param to 0xFFFF to start recording; the recording will continue unless a stop

recording command is received or sensor stops automatically. Set the param to other

values to start a timed recording. The unit is second. Note that the maximum recording

time of the sensor is 88 minutes.
[DotDevice startRecording:0xFFFF];

4.12.3 Get recording status

Use getRecordingStatus to check the status of recording.
[DotDevice getRecordingStatus];

After call this method, the DotDevice.recording.recordingStatus will be updated with the

recording status.

Table 17: Recording status

Recording status Description

XSRecordingIsIdle Idle status

XSRecordingIsRecording Sensor is recording

XSRecordingIsRecordingStopped Recording is stopped

XSRecordingIsErasing Erasing recording data

XSRecordingIsFlashInfo Sensor is getting flash information

In the meantime, updateRecordingStatus block will be updated automatically.
[DotDevice.recording setUpdateRecordingStatus:^(XSRecordingStatus

status) {

}];

This block will also be updated after calling startRecording and stopRecording.

 www.movella.com

4.12.4 Stop recording

Use stopRecording to stop a normal recording or a timed recording.
[DotDevice stopRecording];

Recording will also stop automatically in the following situations:

• power button is pressed over 1 second.

• time is up for timed recording.

• flash memory is over 90%.

4.12.5 Get recording time

If the recordingStatus is XSRecordingIsRecording, you can call getRecordingTime method

to get recordingDate, recordingTime and remainingTime.
[DotDevice getRecordingTime];

DotDevice.recording.recordingDate

// start recording time 4 bytes unit is second.

DotDevice.recording.recordingTime

// recording Time that you startRecording set 2 bytes unit is second.

DotDevice.recording.remainingTime

// the remaining time after you start recording if you set

recordingTime is not 0XFFFF;

4.12.6 Erase flash

Erase all the recording data space, other flash space will not be affected.
[DotDevice eraseData];

setEraseDataDoneBlock will be updated if the erase process is done.
[DotDevice setEraseDataDoneBlock:^(int success) {}];

 www.movella.com

4.13 Recording data export

A stand-alone application – Movella DOT Data Exporter is provided to export the recording

data to PC via USB cable. You can download Windows or MacOS version in developers

page.

Figure 7 shows the recommended workflow to start and stop recording with SDK.

Figure 7: Workflow to export recording data

Follow the steps below to implement data export function in your application.

4.13.1 Set export data format

Refer to Table 18 for available data quantities when configuring the export data format.

For physical meanings and other information of the data, please refer to chapter 4 in

Movella DOT User Manual.

Note that free acceleration is not provided in this firmware. Refer to this BASE article to

calculate free acceleration from orientation (quaternion) and acceleration.

https://www.movella.com/support/software-documentation?hsCtaTracking=39d661fa-2ea8-4478-955e-01d0d8885f14%7C3ad1c7d6-9c3a-42e9-b424-5b15b9d0924e
https://www.movella.com/support/software-documentation?hsCtaTracking=39d661fa-2ea8-4478-955e-01d0d8885f14%7C3ad1c7d6-9c3a-42e9-b424-5b15b9d0924e
https://www.movella.com/hubfs/Xsens%20DOT%20User%20Manual-3.pdf
https://base.xsens.com/s/article/Calculating-Free-Acceleration?language=en_US

 www.movella.com

Table 18: Export data quantities

Data Description

XSRecordingDataTimestamp TimeStamp

XSRecordingDataQuaternion Quaternion

XSRecordingDataEulerAngles Euler angles

XSRecordingDataDq dq

XSRecordingDataDv dv

XSRecordingDataAcceleration Calibrated acceleration

XSRecordingDataAngularVelocity Calibrated angular velocity

XSRecordingDataMagneticField Calibrated magnetic field

XSRecordingDataStatus Status

XSRecordingDataClipCountAcc clipCountAcc

XSRecordingDataClipCountGyr clipCountGyro

If exportDataFormat is not set, the default value is:

• XSRecordingDataTimestamp

• XSRecordingDataEulerAngles

• XSRecordingDataAcceleration

• XSRecordingDataAngularVelocity

UInt8 bytes[4] = { XSRecordingDataTimestamp, XSRecordingDataQuaternion

, XSRecordingDataDq , XSRecordingDataDv };

NSData *exportData = [NSData dataWithBytes:defaultBytes

length:sizeof(bytes)];

DotDevice.exportDataFormat = exportData;

4.13.2 Get export file information

You can use the getExportFileInfo method to get the start time UTC of the recording files.

DotDevice.recording.files will be initialized only after calling DotDevice getFlashInfo. Since

part of the file information is written in flash information.
[DotDevice getExportFileInfo];

[DotDevice setExportFileInfoDone:^(BOOL success) { }];

4.13.3 Set export file list

All the available recording files will be saved in recording.files array. Export file list is a

DotDevice.recording.files index array. You must set export file list via

recording.exportFileList before start export file data, otherwise no files will be exported.

The max index cannot exceed DotDevice.recording.files.count.

NSArray *array = [[NSArray alloc] initWithObjects:@0, @1, @2, nil];

DotDevice.recording.exportFileList = array;

or

NSArray *array = [[NSArray alloc] initWithObjects:@2, nil];

DotDevice.recording.exportFileList = array;

 www.movella.com

4.13.4 Start export

Before starting to export thedata file, make sure you have set the export data format and

get the export file information.
[DotDevice startExportFileData];

Call ExportFileDone block after the data export is finished:
[DotDevice.recording setExportFileDone:^(NSUInteger index, BOOL

result) { }];

If you want to use recording export file data, call parse file data block:
[DotDevice setDidParseExportFileDataBlock:^(DotPlotData * _Nonnull

plotData) { }];

4.13.5 Stop export

Stop export file data.
[DotDevice stopExportFileData];

4.13.6 Update export status

UpdateExportingStatus block will be updated after calling startExportFileData and

stopExportFileData.
[DotDevice.recording setUpdateExportingStatus:^(XSExportStatus status)

{ }];

Table 19: Export status

Export status Description

XSExportIsExportingData The flash is exporting recording data

XSExportIsStopExportingData Data exporting is stopped

 www.movella.com

4.14 mFirmware update

Continuous firmware releases from Movella are scheduled for new features, improvements,

and bug fixes. With Over-the-Air (OTA) firmware update function in the Movella DOT, you

can easily update the sensors to latest firmware version.

With the OTA functions in the SDK, you can do the firmware update in your own application

from the Movella DOT update server via OTA.

NOTE:

• Sensors can only upgrade or downgrade when in charging status.

• Network connection is required for OTA. Check the network connection before

checking for firmware update.

All the firmware update related methods are in the DotOtaManager.h header file. And the

parameter is DotDevice object. Make sure the device is initialized before calling the related

methods. All the callback methods are in the DotOtaManagerDelegate class.

4.14.1 Set the delegate

Set the delegate in your ViewController class:
- (void)viewWillAppear:(BOOL)animated

{

 [super viewWillAppear:animated];

 [DotReconnectManager setEnable:YES];

 ...

}

4.14.2 Check firmware update

Based on the current firmware version and release type, you can check if there is new

firmware version available with checkOtaUpdates. This function is usually used when you

just want to check if there is new firmware available.
[[DotOtaManager defaultManager] checkOtaUpdates:device];

After calling checkOtaUpdates, onOtaUpdates method will be triggered. If the result = YES

and version is not an empty string, it means there is a firmware that can be updated. The

result would be “No” if there is no new firmware available.
(void)onOtaUpdates:(NSString *)address result:(BOOL)result

version:(NSString *)version releaseNotes:(NSString *)releaseNotes;

Use checkOtaUpdatesAndDownload method if you want to download the firmware file

(.mfw) after checking and start the OTA process.

After calling checkOtaUpdatesAndDownload method, there will be two callbacks. One is the

onOtaUpdates, which is the same as calling checkOtaUpdates. The other is

onOtaDownload. If the available firmware has been downloaded, this method will be

triggered:
(void)onOtaDownload:(NSString *)address version:(NSString *)version;

 www.movella.com

4.14.3 Check firmware downgrade

Firmware downgrade function is provided to downgrade the beta firmware versions to the

last stable version. Stable firmware versions cannot downgrade to any previous versions.

Moreover, if a new stable version is available, beta versions cannot rollback to previous

stable versions. You can only update the beta versions to the new stable version under this

circumstance.

Similar to checking update, you can use checkOtaRollback method to check if the sensor

can rollback.
[[DotOtaManager defaultManager] checkOtaRollback:device];

After calling checkOtaRollback, onOtaRollback method will be triggered. If the result = YES

and version is not an empty string, it means that there is a firmware that can be rollbacked.

The result would be “No” if there is no firmware available.
(void)onOtaRollback:(NSString *)address result:(BOOL)result

version:(NSString *)version releaseNotes:(NSString *)releaseNotes;

Use checkOtaRollbackAndDownload method if you want to download the firmware file

(.mfw) after checking and start the OTA process.
[[DotOtaManager defaultManager]checkOtaRollbackAndDownload:device];

After calling checkOtaRollbackAndDownload method, there will be two callbacks. One is the

onOtaRollback, which is the same as calling checkOtaRollback. The other is

onOtaDownload. If the available firmware has been downloaded, this method will be

triggered:
(void)onOtaDownload:(NSString *)address version:(NSString *)version

4.14.4 Start OTA

You can start the OTA process once the target firmware file has been downloaded. Start

the OTA by calling startOta method:
[[DotOtaManager defaultManager] startOta:device];

During the OTA process, the firmware file will be transmitted to the sensor and updated.

You can get the OTA status from these callback methods:

1. onOtaStart – The OTA has started successfully.

2. onOtaProgress – The OTA is still in progress.

3. onOtaEnd – The OTA has ended successfully and the update or downgrade is

done.
(void)onOtaStart:(NSString *)address result:(BOOL)result

errorCode:(int)errorCode;

(void)onOtaProgress:(NSString *)address progress:(float)progress

errorCode:(int)errorCode;

(void)onOtaEnd:(NSString *)address result:(BOOL)result

errorCode:(int)errorCode;

The OTA will fail if any of the above stages fails. There are some common reasons for

OTA failure:

 www.movella.com

1. Failed to send ‘start OTA’ and ‘stop OTA’ commands.

2. OTA file is not sent completely and is always retransmitting. This is usually due to

the insufficient Bluetooth performance of the mobile device.

3. Sensor is out of charging status during OTA.

4. Sensor disconnects during OTA.

The onOtaFileMismatch callback will be called if the new firmware file does not match the

current sensor. The OTA process will end.
(void)onOtaFileMismatch:(NSString *)address;

The onOtaUncharged callback will be called if the sensor is not in charging and the OTA

process will end.
(void)onOtaUncharged:(NSString *)address;

4.14.5 Stop OTA

You can stop the OTA when it is still in progress:
[[DotOtaManager defaultManager] stopOta:device];

After stopOta method, this callback will be triggered:
(void)onOtaEnd:(NSString *)address result:(BOOL)result

errorCode:(int)errorCode;

4.14.6 Clear the cache file

The downloaded firmware files will be saved in Library/Caches/${BundleId}/ota folder.You

can delete them by using clearCache method.
[[DotOtaManager defaultManager] clearCache]

 www.movella.com

4.15 Mag field mapper

When Movella DOT sensor is mounted to an object that contains ferromagnetic materials,

the measured magnetic field can become distorted, causing errors in measured

orientation. To correct for known magnetic disturbances, Magnetic Field Mapper function

has been developed to allow users to remap the magnetic field of the sensor.

The MFM can be executed in a few minutes and yields a new set of calibration values that

can be written to the Movella DOT’s non-volatile memory, which means it will not be

erased by powering off or firmware updates.

With the SDK, you can start/stop MFM, start data processing, get mtb output data and

write it to sensor.

Figure 8: MFM Workflow shows the recommended workflow to start and stop MFM with

Android SDK.

Figure 8: MFM Workflow

4.15.1 Integrate MFM SDK framework

• Import the whole MovellaDotSdkMfm.framework package into the target project.

 www.movella.com

• Make sure MovellaDotSdkMfm.framework is included in Target → General →

Framework, Libraries, and Embedded Content, and the Embed property is
‘Embed & Sign’

4.15.2 Implementation MFM

1. Set MFM delegate in viewController
[[DotMFMManager defaultManager] setMfmDelegate:self];

2. Implement the DotMFMDelegate interfaces
- (void)onMFMProgress:(int)progress address:(NSString *)address

{

 ...

}

- (void)onMFMCompleted:(XSDotMFMResultTpye)type address:(NSString

*)address

{

 ...

}

3. Start MFM

When calling startMFM() method, the MFM process will be started, then the

onMFMProgress() method will be triggered. Developer can listen the progress of

MFM through this. When the progress reaches to 100, the MFM will be on

processing state. After MFM process finished, the onMFMCompleted() will be

triggered, developer can know the MFM state by the parameter type.
[[DotMFMManager defaultManager] startMFM:self.mfmDevices];

4. Stop MFM

If you want to stop current MFM process, you can call this stopMFM(). After call

this method, the MFM process will be stopped and onMFMCompleted() will be

triggered.
[[DotMFMManager defaultManager] stopMFM:self.mfmDevices];

4.16 Other functions

4.16.1 Read RSSI

While scanning sensors, you can use the property RSSI to get the RSSI:
DotDevice.RSSI

You can also read RSSI when sensor is connected by readRSSI method.
[DotDevice readRSSI:^(NSNumber * _Nonnull signal) {

 }];

4.16.2 Identify

To identify or find your device, you can call the following function. The device will fast blink

8 times and then a short pause when you call this function.
[DotDevice startIdentifying];

 www.movella.com

4.16.3 Power saving

In power-saving mode, sensors will turn off the signal pipeline and BLE connection and put

the MCU in a sleep state to ensure minimum power consumption. The default time

threshold to enter power saving mode is set to 10 min in advertisement mode and 30 min

in connection mode. These values are saved in the non-volatile memory and can be

adjusted in Movella DOT app or SDK.

There is an example to set power saving time in advertisement and connection mode both

to 30 minutes.
[DotDevice setPowerSavingTimeout:30 xSecond:0 yMinutes:30 ySeconds:0];

4.16.4 Button callback

If there is a single click on the power button during connection, a notification will be sent

with a timestamp when this single click is released. This function is called as “Button

callback”.

When the pressing time is 10~800ms, it is judged as a valid single click. The timestamp is

from sensor’s local clock and independent of synchronization.
[DotDevice setDidButtonCallbackBlock:^(int timestamp) {

 }];

4.16.5 Power on options

This feature is to allow user to configure the Movella DOT v2 sensor to be powered on by

USB plugin or not. This setting is only available in v2 sensor.

By default, power on by USB is disabled. So, the sensor will be in charging status if

connected with USB cable. You can call enableUsbPowerOn() to set enable this feature.
[DotDevice enableUsbPowerOn:YES];

By enabling USB power on, the sensor will power on immediately after the USB plugin.

With this feature, you can power on multiple sensors with the USB plugin at once.

 www.movella.com

5 Appendix

5.1 Real-time streaming modes

NOTE:

You can get other data quantities from the available data in each measurement mode.

Refer to section 4.10.6 for the conversions that can be used.

5.1.1 Extended (Quaternion)

Table 20: Extended (Quaternion)

Mode name Payload Available data

XSBleDevicePayloadExtendedQuaternion 36 bytes

• SampleTimeFine
• Orientation (Quaternions)
• Free acceleration

• Status

5.1.2 Complete (Quaternion)

Table 21: Complete (Quaternion)

Mode name Payload Available data

XSBleDevicePayloadCompleteQuaternion 32 bytes
• SampleTimeFine
• Orientation (Quaternions)
• Free acceleration

5.1.3 Orientation (Quaternion)

Table 22: Orientation (Quaternion)

Mode name Payload Available data

XSBleDevicePayloadOrientationQuaternion 20 bytes

• SampleTimeFine

• Orientation (Quaternions)

5.1.4 Extended (Euler)

Table 23: Extended (Euler)

Mode name Payload Available data

XSBleDevicePayloadExtendedEuler 32 bytes

• SampleTimeFine
• Orientation (Euler angles)
• Free acceleration
• Status

 www.movella.com

5.1.5 Complete (Euler)

Table 24: Complete (Euler)

Mode name Payload Available data

XSBleDevicePayloadCompleteEuler 28 bytes

• SampleTimeFine

• Orientation (Euler angles)
• Free acceleration

5.1.6 Orientation (Euler)

Table 25: Orientation (Euler)

Mode name Payload Available data

XSBleDevicePayloadOrientationEuler 16 bytes
• SampleTimeFine
• Orientation (Euler angles)

5.1.7 Free acceleration

Table 26: Free acceleration

Mode name Payload Available data

XSBleDevicePayloadFreeAcceleration 16 bytes
• SampleTimeFine
• Free acceleration

5.1.8 High fidelity (with mag)

Table 27: High fidelity (with mag)

Mode name Payload Available data

XSBleDevicePayloadInertialHighFidelityWithMag 35 bytes

• SampleTimeFine
• dq
• dv

• Angular velocity
• Acceleration
• Magnetic field

• Status

5.1.9 High fidelity

Table 28: High fidelity

Mode name Payload Available data

XSBleDevicePayloadHighFidelityNoMag 29 bytes

• SampleTimeFine
• dq
• dv

• Angular velocity
• Acceleration
• Status

 www.movella.com

5.1.10 Delta quantities (with mag)

Table 29: Delta quantities (with mag)

Mode name Payload Available data

XSBleDevicePayloadDeltaQuantitiesWithMag 38 bytes

• SampleTimeFine
• dq

• dv
• Magnetic field

5.1.11 Delta quantities

Table 30: Delta quantities

Mode name Payload Available data

XSBleDevicePayloadDeltaQuantitiesNoMag 32 bytes

• SampleTimeFine

• dq
• dv

5.1.12 Rate quantities (with mag)

Table 31: Rate quantities (with mag)

Mode name Payload Available data

XSBleDevicePayloadRateQuantitiesWithMag 34 bytes

• SampleTimeFine
• Angular velocity

• Acceleration
• Magnetic Field

5.1.13 Rate quantities

Table 32: Rate quantities

Mode name Payload Available data

XSBleDevicePayloadRateQuantitiesNoMag 28 bytes
• SampleTimeFine
• Angular velocity
• Acceleration

5.1.14 Custom mode 1

Table 33: Custom mode 1

Mode name Payload Available data

XSBleDevicePayloadCustomMode1 40 bytes

• SampleTimeFine
• Orientation (Euler angles)
• Free acceleration
• Angular velocity

 www.movella.com

5.1.15 Custom mode 2

Table 34: Custom mode 2

Mode name Payload Available data

XSBleDevicePayloadCustomMode2 34 bytes

• SampleTimeFine
• Orientation (Euler angles)

• Free acceleration
• Magnetic field

5.1.16 Custom mode 3

Table 35: Custom mode 3

Mode name Payload Available data

XSBleDevicePayloadCustomMode3 32 bytes
• SampleTimeFine
• Orientation (Quaternions)
• Angular velocity

5.1.17 Custom mode 4

Table 36: Custom mode 4

Mode name Payload Available data

XSBleDevicePayloadCustomMode4 51 bytes

• SampleTimeFine

• Orientation (Quaternions)
• dq
• dv
• Angular velocity
• Acceleration
• Magnetic field

• Status

5.1.18 Custom mode 5

Table 37: Custom mode 5

Mode name Payload Available data

XSBleDevicePayloadCustomMode5 44 bytes

• SampleTimeFine
• Orientation (Quaternions)

• Acceleration
• Angular velocity

