Document XD0201P, Revision A, July, 2023

. Movella Dot SDK
Novella Programming Guide

for Android

Revision Date By Changes

A ' July 2023 | ERI, MRA | Movella DOT Rebranding |

© 2005-2023, Movella Technologies B.V. All rights reserved. Information in this document is subject to change
without notice. Xsens, MVN, MotionGrid, MTi, MTi-G, MTx, MTw, Awinda, Movella DOT and KiC are registered
trademarks or trademarks of Movella Technologies B.V. and/or its parent, subsidiaries and/or affiliates in The
Netherlands, the USA and/or other countries. All other trademarks are the property of their respective owners.

['Nhovella 2

Table of Contents

1 INtrodUcCtionN......cceieecccsssscnsssssnsssssnnssnnsnnsnsnsnsssnnnnsnnnnnnnnnnnnnnnnnnnnnnn 7

2 Getting Startedccccciiii i O

2.1 Platform ReqUITEMENES . i e 8
2.2 EXAMIPIE COUB ittt e e e 8
ARG BT B QO o =1 g Lo =] (o T = PP 8
2.4 Prerequisites for Android Studio Project.....ccciviiiiiiiiiiiiiic 8
2.5 ImMPOrt SDK PaCKage ..ot i e e 8
2.6 Implement INEerface .o 9
3 Classes and Interfacesiccrimrimmismsmmsssssnsssansssnnsssnnssnnnnnas 10
7 N 1 o) (=T o = o< PP 10
I o= o 1 V1<) Lo 1 1= PP 10
4 SDK Usage with Examples......c.cccviriemmimrimsiemssnsmsmssssanssnsnnnnans 12
4.1 Recommended WOrKIIOW ... uiuiirsi i e e e ae e aneanes 12
4.2 DebUGQING flag ..ot 13
Z2SC TN 2 U= Tolo] o] g Y=T ot To] o WE=T =t ol 1 o o [P 13
= | = o | o 13
2 S (o Yo | o = o P 14
4.5.1 Connect MUIIPIE SENSOIS ..iitiiii i e e e e e aaeaas 15
4.6 INIIaliZation . e e 15
4.7 FIter Profile .. e 16
4.7.1 Get current filter profile ...ouiiii i e 16
4.7.2 Get all the filter profiles ..o 16
4.7.3 Setanew filter profile ... 17
S O 1) o o] U ol o= = 17
4.9 SYNCAIONIZAtION ..uii e 18
4.9.1 Gt SYNC SEatUS .ttt i i e 19
LS T) = | o o=V o [ol 19
4.9.3 Gel SYNC FESUIES .. .e ettt et et e e e e neanens 20
S IR) o o I =1 Y/ o [20
4.10 Real-time Streaming ..coeieiieiii it 21
4.10.1 Set MeasuremMeNt MOAE ..ot i e a e a e aa e aaeaareaaneans 21
2 O) -l 0 1=t 81 = 0 1= o | o P 21
2 OGN S) o] o I 0 g T=T=F U1 =] =] | o P 22
4.10.4 Data l0ggiNg toviiitiiitiiit i e 22
4.10.5 High fidelity MOAES ...uviiiiieiiii it e e e aeanens 22

['Nhovella 3

4.10.6 Data CONVEISIONS 1ttt snnnannannnnnnns 23

4.11 Heading RESEE. . ittt 25
4.11.1 Heading reset Statls ..viiviiiiiiii i e eaneaneanens 25
4.11.2 ReSEl NEaAiNg «iiiriiiiiii i e e e e e e 26
4.11.3 Revert Neading cuiiuii it 26

o A U= Tolo] e | T PP 27
4.12.1 Get flash information.........coiiiii 29
2 P RS -1 o WA= (o] o I o <Tolo] /e | o Vo [FS PP 29
4.12.3 Get recording StatlUs. . oviiiii i i 30
4.12.4 Get recording LM .o e e 30

4.13 Recording data X PO .. i 32
4.13.1 Get export file iINnformation ... 33
4.13.2 Set export data format...ooviiiii e 33
4.13.3 Start EXPOrtiNg criiiri i 33
S G T Y o] o J =04 oo] 1 o [P 34
4.13.5 Check eXporting StatUus ...ooviiiiiiiiiiii e 34

o T 0 gLV [=R U] oY = | o < PP 35
I N 1 Y Yo] Y 5 PP 35
N A =T ol 0 01 1=1] o o = PP 35
4.14.3 Instantiate OTA Manager ..ot ae e e aneanens 35
4.14.4 Check firmware UPAate .. c.ciiiiiiii i i e e e e e a e aaeaaaeaas 36
4.14.5 Check firmware dOWNgradeooviiiiiiiiiii e aeaeas 36
N G = Y o w1 PP 37
2) o o N I NP 38
4.14.8 Clear CACNE ittt ittt ittt e 39

L 0 T 1 PP 40
4.15.1 Start/stop MEM ... e e e e 41
O R) -1 o il o] o Yol 1= 1 [« RPN 41
4.15.3 Completed MEM .. e e e 42

4.16 FaCtOry ReSET.. vttt 43
4.16.1 INItialiZation .oovei i 43
4.16.2 Check for feature SUPPOIt cuuiiii i e ae e e anaanens 43
2 GG I =T 0 0 == = 43
N I R 1 ol 2 == U PP 44

L A @ 1 o o =T ol {0 Tt o [0 o = PP 44
4.17.1 REAA RSO ST ittt ettt e 44
4.17.2 TAENTi Yttt 44
2 G T o 1V =T =3 NV [o P 44
4.17.4 BUtton Callback ..o e 45
4.17.5 POWEE ON OPEIONS 1ottt e e 45

5 AppendiX.icciiecrssssssansssnnssanssssnsssansssansssnnssansssansssnnsssnnssnnsssansanans 46

5.1 Real-time streaming MOdESviiiiiiiiii e e aaens 46
5.1.1 Extended (QUAtEIMION) .uieiiiiiis it e e r e aneareaneanenes 46
5.1.2 Complete (QUAatErMION) ..iei it e aaeaaees 46
5.1.3 Orientation (QUatermion) ... i e 46

['Nhovella s

5.1.4 EXtended (EUIEr) . i 46
5.1.5 Complete (EUIEI) uuiiiii i e 47
5.1.6 Orientation (BUIE) .o e 47
5.1.7 Free acCeleralion ..o 47
5.1.8 High fidelity (With Mag) ..ccooeiiii 47
5.1.9 High fidelity .ooiiriiii i e 47
5.1.10 Delta quantities (With Mag)ccoviiiiiii 48
5.1.11 Delta qUantitiEs .oiiniii i e 48
5.1.12 Rate quantities (With Mag).....cooiiiiiiii 48
5.1.13 Rate QUaANTITIES oot e 48
5.1.14 CUSTOM MO d ottt i e e ettt e a e s at e e aa e raneeaaanes 48
5.1.15 CUSEOM MOAE 2 1uiiiiiiiieiie it ae s s e e e e e e e e n e e e aneaneaneaneanees 49
5.1.16 CUSEOM MOAE B ittt ae s s s e e s e e e e e e e e e aneaneaneaneanees 49
o P 2 O U1 o T .o T L= 2 49
5.1.18 CUSEOM MOAE 5 ittt r e e e s e s e e e e e e e aneaneanenneanees 49

['Nhovella s

List of Tables

Table 1: Platform reqQUIrEMENTS vttt r e et at e aaeeaneaaneans 8
Table 2: Classes in Movella DOt SDK ... e ne s sansaneaneaneanens 10
Table 3: Interfaces in Movella DOt SDKiiiiiiiiiiii e aaeaaens 10
Table 4: PermissiONs liSt. ... 10
Table 5: Filter profile INAEX ...ouviieii i e e e aee e 16
Table 6: OULPUL FalES .ttt e e e e a e e anaanans 17
Table 7: Heading Statls .oiviiiiii i e aae 25
Table 8: ReCOrdiNg SEatUsS ..uuiiriii it e r e r e e e anennnas 30
Recording states are defined in Table 9. ... e 34
Table 10: Extended (QUaterMiON) ... i e a e aeeaaeas 46
Table 11: Complete (QUAtEIMION) wiiuiiiriii i a e a e ae e e e aeeaneas 46
Table 12: Orientation (QUAatEIMION) c.iiiuiii i i r e aeeaaeas 46
Table 13: EXtended (EUIEI) .o e et ere e aaeas 46
Table 14: Complete (EUIEI) .o ea e a e e e e annennes 47
Table 15: Orientation (BUIEI) i et e e aaeas 47
Table 16: Free acCeleration ..ot e e e e e e s a e nneaneanens 47
Table 17: High fidelity (With mMag) ..o e 47
Table 18: High fidelity «ooueiiiiii i e e e aaeas 47
Table 19: Delta quantities (With Mag) ...ccoieiiiiiii e 48
Table 20: Delta QUaNTIIES. ..ottt e 48
Table 21: Rate quantities (With Mag)cvieiiii e 48
Table 22: Rate qUaNtitiEs v e 48
Table 23: CUSTOM MOAE L ..ottt r e e e s e e e e nennsaneaneaneanens 48
Table 24: CUSTOM MOAE 2 .ttt a e s e e e e e e e e e neanaaneaneaneanens 49
Table 25: CUSEOM MOAE B ottt et a e a e e e ne e aeaaneanns 49
Table 26: CUSTOM MOAE 4 .iiriiiii i r e a e e e e e e e e neansaneaneaneanens 49

List of Figures

Figure 1: Movella Dot Mobile SDK ArchiteCtUre ... c.viiiiiii e 7
Figure 2: Movella Dot Android SDK WOrKflOWuiuiiriiiiii i aenaea 12
Figure 3: Synchronization WOrKfIOW ... e e 18
Figure 4: Workflow to start and stop real-time streamingc.coviiiiiiiiiiiiiii s 21
Figure 5: Workflow for heading reset ... e e 25
Figure 6: Workflow to start and stop recordingcovviiiiiiiii e 27
Figure 7: Workflow to export recording datacoovviiiiiiiii e 32

['Nhovella :

1 Introduction

The Movella Dot Android SDK is a software development kit for Android mobile applications.
Android developers can use this SDK to build their applications to scan and connect the
sensors, get data in real-time streaming or recording, as well as other functions.

This document mainly addresses SDK usage with example codes. It should be used
together with Movella Dot SDK core documentation with detailed information. Before
getting started with the SDK, it's advised to read Movella Dot User Manual first to
understand the basic functions of the sensor.

Movella DOT SDK (Android)

Models BLE scanner

External callback DOT Device

Scanner callback

Device callback

Mobile application

DOT Payload

Libs

Data processor

Figure 1: Movella Dot Mobile SDK Architecture

The SDK provides some public classes for developers to facilitate easier integration into
specific application. Figure 1 shows the SDK architecture and components. It contains 3
main models to manage the state of device, data payload types and data output. It also
contains different classes! available for usage. The data processor library is integrated in
SDK to process the data from firmware. Other libraries like sensor fusion and calibration
libraries are running on Movella Dot firmware.

1 Not every class can be new or referenced

['Nhovella 7

https://www.movella.com/hubfs/Xsens%20DOT%20User%20Manual-3.pdf

2 Getting Started

2.1 Platform Requirements

Table 1 shows the Android OS, CPU architecture and Bluetooth requirements for the
mobile devices.

Table 1: Platform requirements

Platform requirements

e Android OS 8.0 and above, arm64-v8a ABI (64-bit)

e ARMvS8 CPU architecture

e Bluetooth
o Best performance with BLE 5.2 DLE? supported
o Compatible with Bluetooth 4.2

2.2 Example code

Refer to this project on GitHub for the Android example code of Movella Dot SDK:
https://github.com/MovellaTechnologies/dot_example

2.3 SDK Changelogs
Refer to this BASE article for the Android SDK changelogs.

2.4 Prerequisites for Android Studio Project

This section addresses setup parameters for proper usage of the Movella Dot Android SDK.
Make sure the following configurations are met when creating the Android Studio project.

1. Make sure the minSdkVersion is 26+ (Android 8.0) in the build.gradle (app level)
file

2. Use androidx.* artifacts

Dependency workmanager: implementation "androidx.work:work-runtime:2.5.0"

4. Dependency lifecycle: implementation "androidx.lifecycle:lifecycle-runtime:2.3.1"

w

2.5 Import SDK Package

This section addresses setup parameters and some practical considerations for proper
usage of the Movella Dot SDK. The following steps describe how to import the SDK object
into your Android Studio project.

1. Import the AAR file according to the steps in the Add your AAR or jar as a
dependency section from Android developer page.
2. After Build finished, you can do some basic settings of the SDK as shown below.

private void initXsSdk() {

2 Data Length Extension

['Nhovella :

https://movella.my.site.com/XsensKnowledgebase/s/article/Moevlla-DOT-Release-Notes-and-Change-Logs
https://developer.android.com/studio/projects/android-library#psd-add-aar-jar-dependency
https://developer.android.com/studio/projects/android-library#psd-add-aar-jar-dependency

String version = DotSdk.getSdkVersion () ;

DotSdk.setDebugEnabled (true) ;
DotSdk.setReconnectEnabled (true) ;

2.6 Implement Interface

Developers can implement DotDeviceCallback and DotScannerCallback in one activity as
shown below.

public class MainActivity extends AppCompatActivity
implements DotDeviceCallback, DotScannerCallback {

}

If IDE shows an error message, click the line and press Alt + Enter to choose Implements
methods, the IDE will generate all the required methods that need to be implemented
automatically.

['Nhovella :

3 Classes and Interfaces

The list of classes as part of Movella Dot SDK is shown in Table 2.
Table 2: Classes in Movella Dot SDK

Class ‘ Description

The SDK main object used for global settings such as enable debug or

DotSdk
reconnect features.
DotDevice Represents a Movella Dot device object, including basic information and
operations. Return data by DotDeviceCallback.
Contains all the measurement data, including acceleration, angular
DotData -
velocity, and mag data, etc.
DotLogger A class for data logging.
DotParser A class for parsing data from the device via Bluetooth.
A class for scanning Movella Dot device. Return the scanned device by
DotScanner
DotScannerCallback.
XsPayload For setting different payload types for measurement.
DotRecordingManager Data recording manager, including data recording, and exporting
methods.
DotSyncManager Synchronization manager for sensors’ syncing

DotSettingsManager Settings Manager primarily handling Factory Reset functionality

3.1 Interfaces
The list of available interfaces as part of Movella Dot SDK is shown in Table 3.
Table 3: Interfaces in Movella Dot SDK

Class ‘ Description

DotDeviceCallback An interface for notifying device information, measurement

data.
DotScannerCallback An interface for notifying LE scan result
DotMeasurementCallback An interface for notifying measurement status and data.
DotCiCallback An interface for notifying firmware crash information result.
DotRecordingCallback An interface for notifying recording status and data of device.
DotSyncCallback An interface for synchronization result.
SettingsCallback gr;tirétee\;if?ec.e for notifying the result of factory resetting of the

3.2 Permissions

The permissions used by this SDK are as listed in Table 4. Make sure these permissions
are set and are part of AndroidManifest.xml file in your project.

Table 4: Permissions list

Permission Purpose

BLUETOOTH For connecting to sensor
BLUETOOTH_ADMIN For connecting to sensor

['Nhovella 10

ACCESS_FINE_LOCATION For LE scanning

ACCESS_COARSE_LOCATION For LE scanning
READ_ EXTERNAL_STORAGE For storing the log file
WRITE_EXTERNAL_STORAGE For storing the log file

['Nhovella 1

4 SDK Usage with Examples

4.1 Recommended workflow

The Android SDK workflow is shown in Figure 2. This flow process can be used by Android
developers after importing SDK library into Android project and creating an SDK object.

Connected Reconnect Disconnected

Start BLE scan Initialization Set measurement mode

Set output rate Start Real-time streaming

Set filter profile

Synchronization

Connect Stop Real-time streaming

Figure 2: Movella Dot Android SDK Workflow

The first thing is to start BLE scanning. Developers can obtain the scan result from a
callback function and use the BluetoothDevice object to initialize DotDevice class. Most of
the operations can be done by making use of this class.

Developers can call the connect function in DotDevice class to connect to the sensors. If
the connection process fails, SDK will check if the reconnection feature is enabled or not.
If it is enabled, a reconnection will start automatically.

Each step is further explained in the following sections with example code.

['Novella 12

4.2 Debugging flag

This is a static function and can be used to enable/disable the debug messages. If set to

true, the SDK will output debug message with this tag - DotSdk.
DotSdk.setDebugEnabled (true) ;

This setting is disabled by default.

4.3 Reconnection setting

This is a static function and can be used to enable/disable the reconnection feature. If set
to true, the SDK will start to reconnect the sensor(s) automatically when the connection is

lost.
DotSdk.setReconnectEnabled (true) ;

You can cancel the reconnecting by:
xsDevice.cancelReconnecting () ;

4.4 BLE scan

To use this, declare a DotScanner object and try to initialize. There are two additional
parameters that need to be put in the constructor - application context and an instance of
DotScannerCallback (i.e., an activity that implemented the DotScannerCallback interface).

The mode can be one of these: SCAN_MODE_BALANCED, SCAN_MODE_LOW_LATENCY or
SCAN_MODE_LOW_POWER.

private DotScanner mXsScanner;
private void initXsScanner () {

mXsScanner = new DotScanner (mContext, this);
mXsScanner.setScanMode (ScanSettings.SCAN MODE BALANCED) ;
}

To start the LE scanning, the function below should be called.
mXsScanner.startScan () ;

The scanned result can be obtained by using the onDotScanned callback function. Note

that only Movella Dot device is reported.
@Override
public void onDotScanned (BluetoothDevice device) {

String name = device.getName () ;
String address = device.getAddress() ;

['Nhovella 13

4.5 Connect

Declare a DotDevice object and use the following parameters to initialize - the application
context, BluetoothDevice object and an instance of DotDeviceCallback (i.e., an activity that

implemented DotDeviceCallback interface).
DotDevice xsDevice =
new DotDevice (mContext, device, MainActivity.this);

Then use the following function to connect to the device.
xsDevice.connect () ;

As a best practice, it is preferred to check whether the device’s name is null or not before
you connect to it. After connecting, the onDotConnectionChanged callback function will be
triggered. If the state equals CONN_STATE_CONNECTED, it means the Bluetooth GATT
connection is successful after which all BLE services/characteristics will be discovered
automatically.

The state of service discovery can be checked from onDotServicesDiscovered callback
function.
@Override
public void onDotConnectionChanged (String address,
int state) {

if (state == DotDevice.CONN STATE DISCONNECTED) ({
// Update UI

}

@Override
public void onDotServicesDiscovered (String address,
int status) {

if (status == BluetoothGatt.GATT SUCCESS) {
// Update UI

}

Once the connection is successful, device information can be obtained using the following
methods, including:
getName

getAddress
getConnectionState
getFirmwareBuildTime
getFirmwareVersion
getBatteryState
getBatteryPercentage
getMeasurementMode
getMeasurementState
getPlotState
getLogState

['Nhovella 14

getTag
getCurrentOutputRate
getFilterProfileInfoList
isSynced

isProductV1
isProductVv2

The following function call can be used to disconnect the device.
xsDevice.disconnect () ;

We add product id to distinguish different hardware versions.
xsDevice.isProductV1 () ;
xsDevice.isProductV2 () ;

4.5.1 Connect multiple sensors

To connect multiple sensors, the DotDevice object can be put into a list under one class.
private ArrayList<DotDevice> mDevicelLst = new ArrayList<>();

After initiating connection to this device, one can add this object to the list to get the
connection result from onDotConnectionChanged callback function.
DotDevice xsDevice = new DotDevice (

mContext, device, MainActivity.this);
xsDevice.connect () ;
mDevicelst.add (xsDevice) ;

To disconnect one device, use the key variable - address to get the device object from the
list and then call disconnect method. It is very important to make sure that the DotDevice
will be removed from the list after the device is disconnected. In a similar way, put
DotLogger object into a list to manage data collecting and logging for multiple devices.

4.6 Initialization

After the sensor connection, an initialization process will start automatically to enable BLE
notifications and obtain basic sensor information, including the hardware and firmware
version, MAC address, tag name, battery status, synchronization status, filter profile,
output rate etc. onDotInitDone() is the callback after the initialization is successful.

NOTE:
e Any read or write operation can only be called after a successful initialization.

public void onDotInitDone (String address) {
// get tag name, version, battery info etc.
DotDevice.getFirmwareVersion () ;
DotDevice.getTag () ;
DotDevice.getBatteryPercentage () ;

DotDevice.identifyDevice () ;

['Nhovella 15

4.7 Filter profile

After the initialization is done, you can get or set the current filter profile for the
measurement. Refer to section 3.2 in the User Manual for more information about filter
profiles.

4.7.1 Get current filter profile

Get the current filter profile that is applied in the measurement:
int profileIndex = DotDevice.getCurrentFilterProfileIndex() ;

The profileIndex is the index of the current selected filter profiles.
Table 5: Filter profile index

Index \ Filter profile Description

0 General This filter profile is the default setting. It assumes moderate dynamics
and a homogeneous magnetic field. External magnetic distortion is
considered relatively short.

1 Dynamic This filter profile assumes fast and jerky motions that last for a short
time. The dynamic filter uses the magnetometer for stabilization of the
heading and assumes very short magnetic distortions. Typical
applications are when sensors are applied on persons for sports such
as sprinting.

You can also get the current filter profile from callback:
SomeClass implements DotDeviceCallback {

public void onDotFilterProfileUpdate (String address, int
filterProfileIndex) {

}

4.7.2 Get all the filter profiles

Get all the supported filter profiles through getFilterProfileInfolist:
ArrayList<FilterProfileInfo> list = DotDevice.getFilterProfileInfolist () ;

You can also get this list from the callback during initialization:
SomeClass implements DotDeviceCallback ({

public void onDotGetFilterProfileInfo (String address,
ArrayList<FilterProfileInfo> filterProfileInfolList) ({

}

['Nhovella 16

https://www.movella.com/hubfs/Xsens%20DOT%20User%20Manual-3.pdf

4.7.3 Set a new filter profile

Before setting a new filter profile, get the index first.
int profileIndex = list.get(0).getIndex() ;
int profileIndex = FilterProfileInfo.getIndex()

Set current filter profile with the index from the profile list.
DotDevice.setFilterProfile (int profilelIndex) ;

onDotFilterProfileUpdate() callback will be triggered if the new filter profile is set
successfully.

4.8 Output rate

After the initialization is done, you can get or set the output rate for the measurement by
DotDevice class. Table 6 shows the available output rates during measurements.

Table 6: Output rates

Measurement ' Output rates |
Real-time streaming 1 Hz, 4 Hz, 10 Hz, 12 Hz, 15 HZz,20 Hz, 30 Hz, 60 Hz
Recording 1 Hz, 4 Hz, 10 Hz, 12 Hz, 15 HZz,20 Hz, 30 Hz, 60 Hz, 120 Hz

Get the current output rate that is applied in the measurement:
int outputRate = DotDevice.getCurrentOutputRate () ;

You can also get output rate from the callback during initialization:
SomeClass implements DotDeviceCallback {

public void onDotOutputRateUpdate (String address, int outputRate) {

}
}

Set a new output rate for the measurement:
DotDevice.setOutputRate (int outputRate) ;

onDotOutputRateUpdate() callback will be triggered if the new output rate is set
successfully.

['Nhovella 17

4.9 Synchronization

All sensors will

be time-synced with each other to a common time base after

synchronization. Refer to section 3.3.2 in Movella Dot User Manual for more information.
Refer to Figure 3 for workflow to start synchronization.

Set the output rate and filter profile before starting the synchronization. Since the sensor
will enter measurement mode right after the sync succeeds so it’s not possible to change

it after sync.

}-——-

1
]
T

Synchronization
12 seconds

'

'
[l
[}

\

]

 — — [

A

. j

4—— Get sync status

BLE connection

— Stop sync if the sensor is synced

0.”
l¢—— Start Sync —8™— [----- -
¢ ------- SDK disconnect sensor - ---- - -

Waiting for

14 seconds

e -
q--------- SDK BLE re-connect - -=-=----- e
PR
SDK BLE connection
€ -------- Read syncresult ----------

Start measurement

- — —[

Stop sync

[\ovella

Figure 3: Synchronization workflow

18

Sync timeout
48 seconds

Sync result callback

SDK internal logic

www.movella.com

https://www.movella.com/hubfs/Xsens%20DOT%20User%20Manual-3.pdf

First implement the DotSyncCallback interface.
public class RecordingFragment implements DotSyncCallback {

public void onSyncingProgress (int progress, int requestCode) {

}

public void onSyncingResult (String address, boolean isSuccess, int
requestCode) {
}

public void onSyncingDone (HashMap<String, Boolean> syncingResultMap,
boolean isSuccess, int requestCode) {

}

public void onSyncingStopped (String address, boolean isSuccess, int
requestCode) {

}
}

4.9.1 Get sync status

Before starting the synchronization, check the synchronization status of the target sensors
and make sure they are not synced. Stop the synced sensor before starting a new
synchronization to prevent error status.

After the initialization is done, you can get sync status by DotDevice class:
boolean isSynced = DotDevice.isSynced() ;

You can also get sync status from the callback function during initialization:
SomeClass implements DotDeviceCallback {
public void onSyncStatusUpdate (String address, boolean isSynced) {

}

4.9.2 Start sync

One of the sensors must be set as the root sensor before starting synchronization, while
the remaining sensors will be the scanners:
mSelectedDevicelList.get (0) .setRootDevice (true) ;

Start the synchronization. mSelectedDevicelList is the list of sensors that need to be

synchronized.
DotSyncManager.getInstance (this) .startSyncing (mSelectedDevicelist,
SYNCING_REQUEST_CODE)

onSyncingProgress(int progress, int requestCode) is the callback during synchronization.
The sync process is updated via “progress”.

['Nhovella 19

SDK will disconnect the sensor after starting the synchronization. The synchronization of 5
sensors would take about 12 seconds so SDK will try to reconnect after 14 seconds.

NOTE:
e Do not interrupt during the synchronization process.

4.9.3 Get sync results

onSyncingResult() function will be called if one sensor has finished the synchronization. If
all the sensors finish the synchronization, onSyncingDone() function will be called back.
syncingResultMap contains the sync results of the device list in startSyncing(). isSuccess
represents whether the synchronization is successful or not.

Once the sync succeeds, sensor will enter measurement mode. You can then choose to
do real-time streaming or recording with the synced sensors.

If the sensor is not reconnected within 48 seconds, the sync is considered as failed. The
sync is also failed if the result shows fail. In that case, SDK will stop those sensors that
have been successfully synced. Refer to this BASE article for more tips about
synchronization.

4.9.4 Stop sync

Stop sync is required after the measurement. Otherwise, the sensor will stay in
measurement mode and the battery will run out soon.

You can stop the synchronization for all the synced sensors:
DotSyncManager.getInstance (this) .stopSyncing() ;

Or stop the synchronization for specific sensors.
DotSyncManager.getInstance (this) .stopSyncing (dotDevices) ;

After one sensor is stopped, you will get the callbacks to indicate the synchronization is
stopped and the sync status is updated.
public void onSyncingStopped (String address, boolean isSuccess,
int requestCode) {

}

public void onSyncStatusUpdate (String address, boolean isSynced) {

}

['Nhovella 20

https://base.xsens.com/s/article/Movella-DOT-Synchronization-Explained?language=en_US

4.10 Real-time streaming

In real-time streaming, motion data is streamed and logged to the central device via a
constant Bluetooth connection. You can set measurement mode, start/stop measurement
and log the data to csv files with the SDK.

Figure 4 shows the workflow to start and stop real-time streaming.

1
1
1

1-—-

BLE connection

Set measurement mode

Start streaming

Plot data callback

Stop streaming

--------- SDK internal logic

Figure 4: Workflow to start and stop real-time streaming

The DotDevice can report sensor data via onDotDataChanged callback function. To use
this, notify the sensor to enter the measurement mode, then start the measurement by
following the steps below.

4.10.1 Set measurement mode

There are 17 measurement modes with different payload modes. Refer to Appendix for
data outputs of different modes. Section 4.2 in Movella Dot User Manual also gives detailed
explanation about output values.
xsDevice.setMeasurementMode (XsPayload.PAYLOAD TYPE HIGH FIDELITY NO MA
G) s

4.10.2 Start measurement

Then call this function to start measuring.
xsDevice.startMeasuring () ;

The measuring data can be received from onDotDataChanged callback function.
@Override

public void onDotDataChanged (String address,

['Nhovella 21

https://www.movella.com/hubfs/Xsens%20DOT%20User%20Manual-3.pdf

DotData DotData) {
}

The address variable can be used to help identify the device for data association. The
DotData object contains all measuring data, timestamp, and the packet counter
information. The following methods from DotData object can be used to get these data
outputs according to the measurement mode.

getAcc()

getGyr()

getDq()

getDv()

getMag()

getEuler()

getQuat()
getSampleTimeFine()
getPacketCounter()

The DotData object has implemented the Parcelable object from Java, so this object can
be passed to another class by Broadcast event.

4.10.3 Stop measurement

The following function call can be used to stop the measurement.
xsDevice.stopMeasuring () ;

4.10.4 Data logging

The DotLogger class provides a way to log measurement data to the SD card of mobile
devices. Try to initialize this object with the full file path. After this object is created, it will
write a default title string of each column and save to csv file.
DotLogger xsLogger = new DotLogger (
Environment.getExternalStorageDirectory() + "/YOUR DIR/");

The following function can be used to update the file content:
public void update (DotData xsData)

Make sure the data output stream is closed before you stop measuring. You can call this
function to flush and close the stream.
xsLogger.stop () ;

4.10.5 High fidelity modes

In high fidelity mode, higher frequency (800 Hz) information is preserved with lower output
data rate (60 Hz), even with transient data loss. There are 3 measurement modes
containing high fidelity inertial data in the SDK:

e PAYLOAD_TYPE_HIGH_FIDELITY_WITH_MAG

e PAYLOAD_TYPE_HIGH_FIDELITY_NO_MAG

['Nhovella 2

e PAYLOAD_TYPE_CUSTOM_MODE_4

To parse the high fidelity inertial data to to delta_q, delta_v or calibrated angular velocity
and acceleration, you need to select the above measurement modes with high fidelity
inertial data. After starting the measurement, you can get the values with getAcc(),

getGyr(), getDq(), getDv() methods from DotData object.
DotDevice DotDevice = ...;

//set measurement mode
DotDevice.setMeasurementMode (XsPayload.PAYLOAD TYPE HIGH FIDELITY WITH
MAG) ;

//start measurement
DotDevice.startMeasuring () ;

public void onDotDataChanged (String address, DotData data) {
final double[] acc = data.getAcc();
final double[] gyr = data.getGyr();
final double[] dg = data.getDg() ;
final float[] dv = data.getDv () ;

4.10.6 Data conversions

Data conversion functions are provided in Movella Dot SDK. Developers can make use of
these conversion functions to get the measurement quantities as required in their
applications.

Convert dq, dv to angular velocity and acceleration

You can get dgq and dv outputs from onDotDataChanged callback in some measurement
modes (e.g. PAYLOAD_TYPE_DELTA_QUANTITIES_WITH_MAG).

You can also set other values to dq and dv as following:
DotData xsData = ...;

xsData.setDg(..) ;
xsData.setDv (..) ;

If there are dg and dv in DotData object, the default data processor can be used to
convert dqg, dv to angular velocity and acceleration.

private DataProcessor mDataProcessor =
DotParser.getDefaultDataProcessor () ;

XsDataPacket packet = DotParser.getXsDataPacket (mDataProcessor,
xsData.getDg (), xsData.getDv())

Then use the output packet to get the angular velocity and acceleration.
final double[] acc = DotParser.getCalibratedAcceleration (packet);
final double[] gyr = DotParser.getCalibratedGyroscopeData (packet) ;

['Nhovella 23

Convert quaternion to Euler angles

quaternion2Euler() method is provided in DotParser class to convert quaternion values to
Euler angles.

final float[] quats = DotData.getQuat () ;

final double[] eulerAngles = DotParser.quaternion2Euler (quats) ;

Calculation of free acceleration

You can get the free acceleration from orientation and acceleration as mentioned in this
BASE article.

In real-time streaming, getCalFreeAcc function is provided to help you omit the
mathematical calculations.

As this function requires both orientation (in quaternion) and acceleration as input, it can
currently on be used with PAYLOAD_TYPE_CUSTOM_MODE_4. Custom mode 4 is the only

mode that can output these two quantities at the same time.
DotData.getCalFreeAcc () ;

The default gravity is 9.8127 m/s?. You can set a custom gravity vector (for example 9.82
m/s?) by defining its value in the following way:
DotData.getCalFreeAcc (double localGravity) ;

['Nhovella 24

https://base.xsens.com/s/article/Calculating-Free-Acceleration?language=en_US

4.11 Heading Reset

Heading reset function allows user to align heading outputs among all sensors and with
the object they are connected to. Performing a heading reset will determine the orientation
and free acceleration data with respect to a different earth-fixed local frame (L"), which
defines the L' frame by setting the X-axis of L’ frame while maintaining the Z-axis along
the vertical. It computes L’ such that Yaw becomes 0 deg.

The heading reset function must be executed during real-time streaming and with
measurement mode including orientation output. The reset orientation is maintained
between measurement start/stop and connection/disconnection but will be lost after a
device reboot.

Figure 5 shows the workflow to do the heading reset.

| DOT | | DK
T
I
|
|

T
I
|
|
— —+

<
G

N

BLE connection

A4

Real-time streaming

Get current status

Send reset command

Read ACK
Callback

Figure 5: Workflow for heading reset

4.11.1 Heading reset status

Get the heading reset status of the sensor.
DotDevice.getHeadingStatus () ;

Refer to Table 7 for the heading reset status of the sensor.
Table 7: Heading status

Heading reset status Description

HEADING_STATUS_XRM_HEADING Heading has been reset

['Nhovella 25

HEADING_STATUS_XRM_DEFAULT_ALIGNMENT | Heading has been reverted to default status
HEADING_STATUS_XRM_NONE Default status

When the sensor is initially powered on, it is HEADING_STATUS_XRM_NONE by default.

4.11.2 Reset heading

Use following functions to perform heading reset.
DotDevice DotDevice = ...;
DotDevice.setDotMeasurementCallback (this) ;
//set to one sensor funsion mode
//start measurement
DotDevice.resetHeading () ;

You need to implement DotMeasurementCallback in one class and override the following

two functions to obtain the result of heading reset.
public class MeasurementFragment implements DotMeasurementCallback {

@Override
public void onDotHeadingChanged (String address, int status, int
result) {

}

QOverride
public void onDotRotLocalRead (String address, float[] quaternions)

}
If the heading reset is successful, status should be HEADING_STATUS_XRM_HEADING,
and the result is HEADING_SUCCESS when onDotHeadingChanged is triggered.

4.11.3 Revert heading

Then revert heading to original value by calling this function.
DotDevice.revertHeading () ;

After reset the heading, a revert is required before conducting a new reset.

['Nhovella 26

4.12 Recording

In recording mode, motion data is stored in the sensor internal storage and can be exported
for post processing. Bluetooth connection is not required during recording. With the SDK,
you can start/stop recording, set timed recording and export recording data.

Figure 6 shows the recommended workflow to start and stop recording with Android SDK.

}--—-
N Ii
AV

D

BLE connection

Enable notification
Callback

Request flash info

S\

Callback

Start recording

Callback

WA

Callback

Stop recording

Callback

- SDK internal logic

Figure 6: Workflow to start and stop recording

To perform the recording function, an DotRecordingManager needs to be instantiated. In
most cases, one DotDevice uses one DotRecordingManager.

First you need to implement the DotRecordingCallback interface:
public class RecordingFragment implements DotRecordingCallback {

public void onDotRecordingNotification (String address, boolean
isEnabled) {

}

['Nhovella 27

public void onDotEraseDone (String address, boolean isSuccess) {
}

public void onDotRequestFlashInfoDone (String address, int
usedFlashSpace, int totalFlashSpace) {

}

public void onDotRecordingAck (String address, int recordingId,
boolean isSuccess, DotRecordingState recordingState) {

}
public void onDotGetRecordingTime (String address, int
startUTCSeconds, int totalRecordingSeconds, int

remainingRecordingSeconds) {

}

public void onDotRequestFileInfoDone (String address,
ArrayList<DotRecordingFileInfo> list, boolean isSuccess) {

}

public void onDotDataExported(String address, DotRecordingFileInfo
fileInfo, DotData exportedData) {

}

public void onDotDataExported(String address, DotRecordingFileInfo
fileInfo) {

}

public void onDotAllDataExported(String address) {

}

public void onDotStopExportingData (String address) {

}

Then instantiate an DotRecordingManager, for example:
private DotRecordingManager mManager;

mManager = DotRecordingManager (context, DotDevice,
RecordingFragment.this) ;

Before performing recording-related operations, you need to enable Notification:
mManager.enableDataRecordingNotification () ;

['Nhovella 28

Then wait for the callback, isEnabled indicates whether the notification is enabled or not.

4.12.1 Get flash information

Flash information refers to recording flash size and its usage. The flash size that can be
used for recording accounts for about 90% of the total size (16 MB for v1 sensor, 64MB
for v2 sensor). So firstly, we need to get the available flash space and the remaining
recording time before start recording.

If the activation of notification is successful, you can get the flash info:
public void onDotRecordingNotification (String address, boolean
isEnabled) {

if (isEnabled) {
mManager.requestFlashInfo () ;
}
}

Waiting for the callback to obtain the used space and the total space size:
public void onDotRequestFlashInfoDone (String address, int
usedFlashSpace, int totalFlashSpace) {

// get usedFlashSpace & totalFlashSpace, if the available flash space
<= 10%, it cannot start recording

}

If the recording storage space is insufficient, clear flash storage space is needed. You can
call mManager.eraseRecordingData() method and wait for the callback:
public void onDotEraseDone (String address, boolean isSuccess) {

// do somethings

}

4.12.2 Start/stop recording

After getting the flash information of recording, you can call mManager.startRecording() to
start recording. Timed recording is also supported with mManager.startTimedRecording.
recordingTimeSeconds is the timer for timed recording and the unit is second. It should
not exceed the maximum recording time (88 minutes).

Call mManager.stopRecording() method to stop recording. Recording will also stop
automatically in the following situations:

e power button is pressed over 1 second.

e time is up for timed recording.

e flash memory is over 90%.

After start and stop, you need to wait for the callback result:
public void onDotRecordingAck (String address, int recordingId, boolean
isSuccess, DotRecordingState recordingState) ({

['Nhovella 25

if (recordingId ==
DotRecordingManager .RECORDING ID START RECORDING) {
// start recording result, check recordingState, it should be
success or fail.

} else if (recordingId ==
DotRecordingManager .RECORDING ID STOP RECORDING) {
// stop recording result, check recordingState, it should be
success or fail.

4.12.3 Get recording status

You can check the recording status by calling mManager.requestRecordingState() and

through onDotRecordingAck() callback.
public void onDotRecordingAck (String address, int recordingId, boolean
isSuccess, DotRecordingState recordingState) {

if (recordingId == DotRecordingManager.RECORDING ID GET STATE) {
if (recordingState == DotRecordingState.onErasing
| | recordingState == DotRecordingState.onExportFlashInfo
| | recordingState == DotRecordingState.onRecording
| | recordingState ==
DotRecordingState.onExportRecordingFileInfo
| | recordingState ==

DotRecordingState.onExportRecordingFileData) {

}

Table 8: Recording status

Recording status Description

XSRecordinglsldle Idle status
XSRecordingIsRecording Sensor is recording
XSRecordingIsRecordingStopped Recording is stopped
XSRecordinglsErasing Erasing recording data
XSRecordinglIsFlashInfo Sensor is getting flash information

4.12.4 Get recording time

You can check how long the sensor has been recording in normal or timed recording by
calling mManager.requestRecordingTime(), via onDotGetRecordingTime() callback.
public void onDotGetRecordingTime (String address, int startUTCSeconds,
int totalRecordingSeconds, int remainingRecordingSeconds) {

// startUTCSeconds is used for normal and timed recoding, and
timestamp when recording starts in seconds

['Nhovella 30

// For timing recording

// totalRecordingSeconds returns the total recording time

// remainingRecordingSeconds is the remaining time of the timed
recording

}

['Nhovella 31

4.13 Recording data export

A stand-alone application — Movella Dot Data Exporter is provided to export the recording
data to PC via USB cable. You can download Windows or MacOS version in developers
page.

Figure 7 shows the recommended workflow to start and stop recording with Android SDK.
[oot] [sk]

p B
}-—-

BLE connection

Enable notification
Callback

Request recording file info

J

Callback

Start data exporting

Callback

W

Stop data exporting
Callback

--------- SDK internal logic

Figure 7: Workflow to export recording data

Before exporting data, ensure that Notification and mManager.requestFlashInfo() are
enabled first.

['Nhovella 32

https://www.xsens.com/developer
https://www.xsens.com/developer

4.13.1 Get export file information

After selecting the sensors to be exported, call mManager.requestFileInfo() to get the list
of recording files:
public void onDotRequestFileInfoDone (String address,
ArrayList<DotRecordingFileInfo> list, boolean isSuccess) {

// A list of file information can be obtained, one message
contains: fileId, fileName, dataSize

}

4.13.2 Set export data format

After getting the file list, select the export data quantities and call the method
mManager.selectExportedData(mSelectExportedDatalds). mSelectExportedDatalds is an
array of data quantities that need to be exported. Please sort from smallest to largest.
Check DotRecordingManager.RECORDING_DATA_ID_* for detailed information. For
example:

mSelectExportedDatalds = new byte[3];

mSelectExportedDatalds([0] =

DotRecordingManager .RECORDING DATA ID TIMESTAMP;
mSelectExportedDatalds[1l] =
DotRecordingManager .RECORDING DATA ID EULER ANGLES;
mSelectExportedDatalds[2] =

DotRecordingManager .RECORDING DATA ID CALIBRATED ACC;

NOTE:
e Free acceleration is not provided in this firmware. Refer to this BASE article to
calculate free acceleration from orientation (quaternion) and acceleration.

4.13.3 Start exporting

Then select the files to be exported and call mManager.startExporting(exportingFileList)
according to the exportingFileList to export.

public void onDotDataExported (String address, DotRecordingFileInfo
fileInfo, DotData exportedData) {

// When the export is in progress, this callback will be called,
returning each exported data DotData, corresponding to the selected
field

// Data can be stored through and written to the csv file

// E.g:

if (xsLogger == null) {

xsLogger = DotLogger.createRecordingsLogger (ctx,
mSelectExportedDatalds, filename, tag, device.firmwareVersion,
BuildConfig.VERSION_NAME);
}
xsLogger.update (data) ;

}

Every time a file is exported, there will be a callback:

['Nhovella 33

https://base.xsens.com/s/article/Calculating-Free-Acceleration?language=en_US

public void onDotDataExported (String address, DotRecordingFileInfo
fileInfo) {
}

All the files have been exported:
public void onDotAllDataExported(String address) {

}

4.13.4 Stop exporting

During the exporting, you can also stop by calling stopExporting():
mManager.stopExporting () ;

And the callback method will be triggered:
public void onDotStopExportingData (String address) {
// Determine whether all devices stop exporting

}

4.13.5 Check exporting status

Erasing flash, data recording and data exporting operation, only one operation can be
processing at the same time. Therefore, before doing related operations, check the status
of the sensor by:

mManager.requestRecordingState () ;

And the callback will be triggered:
public void onDotRecordingAck (String address, int recordingId, boolean
isSuccess, DotRecordingState recordingState) {
// Check you exporting state here
}

Recording states are defined in Table 9.
IMPORTANT!

One sensor corresponds to one manager. You need to clear the previous manager if this

manager is on Ionger used or renew a new manager.
mManager.clear () ;

['Nhovella 34

4.14 Firmware update

Continuous firmware releases from are scheduled for new features, improvements, and
bug fixes. With Over-the-Air (OTA) firmware update function in Movella Dot, you can easily
update the sensors to latest firmware version.

With the OTA SDK, you can do the firmware update in your own application from Movella
Dot update server via OTA.

NOTE:
e Sensors can only upgrade or downgrade when in charging status.
e Network connection is required for OTA.

4.14.1 Import SDK

In Android SDK, OTA SDK and core SDK are two separate SDK. As an extension of the core
SDK, the OTA SDK relies on the core SDK. Integrate the OTA AAR file into your project as
described in section 2.5 to use OTA functions.

4.14.2 Permissions

Add the network and storage permissions in AndroidManifest.xml. Since storage permission
is a runtime permission, you need to add the runtime permission at the same time.
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS NETWORK STATE"
/>

<uses-permission

android:name="android.permission.READ EXTERNAL STORAGE" />
<uses-permission
android:name="android.permission.WRITE EXTERNAL STORAGE" />

4.14.3 Instantiate OTA manager

Instantiate an OTA manager after a sensor is connected and initialized. The constructor
is:

DotOtaManager (@NonNull Context context, @NonNull LifecycleOwner
lifecycleOwner, @NonNull DotDevice device, @NonNull DotOtaCallback
callback) ;

Then you need to implement the callback functions:
SomeClass implements DotOtaCallback {

}
And then instantiate an DotOtaManager object:

DotOtaManager mOtaManager = new DotOtaManager (this, this, mDotDevice,
DotOtaCallback) ;

['Nhovella 35

4.14.4 Check firmware update

Once you have the OTA manager, you can use it to check firmware update or downgrade.
Based on the current firmware version and release type, you can check if there is new
firmware version available with checkOtaUpdates. This function is usually used when you

just want to check if there is new firmware available.
mOtaManager.checkOtaUpdates () ;

After calling checkOtaUpdates, onOtaUpdates method will be triggered. If the result = YES
and version is not an empty string, it means there is a firmware that can be updated. The
result would be "NO” if there is no new firmware available.

Use checkOtaUpdatesAndDownload method if you want to download the firmware file

(.mfw) after checking and start the OTA process.
mOtaManager.checkOtaUpdatesAndDownload () ;

After calling checkOtaUpdatesAndDownload method, there will be several callbacks. One is
the onOtaUpdates, which is the same as calling checkOtaUpdates. Another one is
onOtaDownload. If the available firmware has been downloaded, this method will be
triggered. If the new firmware file does not match the current sensor, the
onOtaFileMismatch will be triggered and the OTA progress will be ended.
SomeClass implements DotOtaCallback {

public void onOtaUpdates (String address, boolean result, String
version, String releaseNotes) {

}
public void void onOtaFileMismatch (String address) {

}

public void onOtaDownload (String address, boolean result) {

}

4.14.5 Check firmware downgrade

Firmware downgrade function is provided to downgrade the beta firmware versions to the
last stable version. Stable firmware versions cannot downgrade to any previous versions.

Moreover, if a new stable version is available, beta versions cannot rollback to previous
stable versions. You can only update the beta versions to the new stable version under this
circumstance.

Similar to checking update, you can use checkOtaRollback method to check if the sensor

can rollback.
mOtaManager.checkOtaRollback() ;

['Nhovella 36

After calling checkOtaRollback, onOtaRollback method will be triggered. If the result = YES
and version is not an empty string, it means that there is a firmware that can be rollbacked.
The result would be “"NO” if there is no firmware available.

Use checkOtaRollbackAndDownload method if you want to download the firmware file

(.mfw) after checking and start the OTA process.
mOtaManager.checkOtaRollbackAndDownload () ;

After calling checkOtaRollbackAndDownload method, there will be two callbacks. One is the
onOtaRollback, which is the same as «calling checkOtaRollback. The other is
onOtaDownload. If the available firmware has been downloaded, this method will be

triggered:
SomeClass implements DotOtaCallback {

public void onOtaRollback (String address, boolean result, String
version, String releaseNotes) {

}

public void onOtaDownload (String address, boolean result) {

}

4.14.6 Start OTA

You can start the OTA process once the target firmware file has been downloaded. Start

the OTA by calling startOta method:
SomeClass implements DotOtaCallback {

public void onOtaDownload (String address, boolean result) {

If (result) {
mOtaManager.startOta () ;

}

During the OTA process, the firmware file will be transmitted to the sensor and updated.
You can get the OTA status from these callback methods:

1. onOtaStart — The OTA has started successfully.

2. onOtaProgress — The OTA is still in progress.

3. onOtaEnd - The OTA has ended successfully and the update or downgrade is

done.
SomeClass implements DotOtaCallback {

['Nhovella 7

public void onOtaStart (String address, boolean result, int
errorCode)

{

}

public void onOtaProgress (String address, float progress, int
errorCode)

{

}

public void onOtaEnd(String address, boolean result, int errorCode)

{
}
}

The OTA will fail if any of the above stages fails. There are some common reasons for
OTA failure:
1. Failed to send ‘start OTA’ and ‘stop OTA’ commands.
2. OTA file is not sent completely and is always retransmitting. This is usually due to
the insufficient Bluetooth performance of the mobile device.
3. Sensor is out of charging status during OTA.
4. Sensor disconnects during OTA.

The onOtaUncharged callback will be called if the sensor is not in charging and the OTA

process will end.
SomeClass implements DotOtaCallback {

public void onOtaUncharged (String address)
{

}

4.14.7 Stop OTA

You can stop the OTA when it is still in progress:
mOtaManager.stopOta () ;

After stopOta method called, this callback will be triggered:
SomeClass implements DotOtaCallback {
public void onOtaEnd (String address, boolean result, int errorCode)

{

}

['Nhovella 38

4.14.8 Clear cache

The downloaded firmware files will be saved in Android app internal data storage. For now
we only have OTA related cache files in the data cache folder. You can delete them by
using clearCache method.

DotSdk.clearCache (applicationContext) ;

NOTE:

One sensor corresponds to one manager. You need to clear the previous manager if this

manager is no longer used or renew a new manager.
mOtaManager.clear () ;

['Nhovella 39

4.15 MFM

When Movella DOT sensor is mounted to an object that contains ferromagnetic materials,
the measured magnetic field can become distorted, causing errors in measured orientation.
To correct for known magnetic disturbances, Magnetic Field Mapper function has been
developed to allow users to remap the magnetic field of the sensor.

The MFM can be executed in a few minutes and yields a new set of calibration values that
can be written to the Movella DOT’s non-volatile memory, which means it will not be erased
by powering off or firmware updates.

Refer to this BASE article for more information.

With the SDK, you can start/stop MFM, start data processing, get mtb output data and
write it to sensor.

Figure 6 shows the recommended workflow to start and stop MFM with Android SDK.

Enable notification
"
Start MFM _\
‘_/Caﬂback
Processing mib file —\
.__j T
| E—
Stop MFM —\
‘—/Callback

| o RRNELTILUEE SDK internal logic

Figure 8: Workflow to start and stop MFM

To perform the MFM function, an DotMfmManager needs to be instantiated. In most cases,
one DotDevice uses one DotMfmManager.

['Nhovella a0

https://base.xsens.com/s/article/How-to-perform-a-Magnetic-Field-Mapper-MFM-with-the-MVN-Awinda-or-MTw?language=en_US

First you need to implement the DotMfmCallback interface:
public class EasyMfmFragment implements DotMfmCallback {

public void onDotMfmProgressChanged (String address, int percentage)

}

public void onDotMfmCompleted (String address, int result, bytel[]
mtbData) {

}

Then instantiate an DotMfmManager, for example:
private DotMfmManager mMfmManager;
mMfmManager = DotMfmManager (context, DotDevice, EasyMfmFragment.this);

4.15.1 Start/stop MFM

You can call mMfmManager.startMfm() to start MFM, it starts to collect real-time
streaming data in SDK.
Call mMfmManager.stopMfm(false) method to stop MFM, it stops to collect real-time
streaming data:
e Parameter isWaitingForResult: Indicates whether to wait for processing results.
Normally, it is set to false.

After startMfm method called, this callback method will be triggered, you can update the
percentage in Ul view:
public void onDotMfmProgressChanged (String address, int percentage) {

// You can update the percentage in UI view
mAdapter.updatePercentage (address, percentage) ;

4.15.2 Start processing

Instantiate an DotMfmProcessor for processing data, for example:
private DotMfmProcessor mMfmProcessor;

mMfmProcessor = DotMfmProcessor (context) ;
mMfmProcessor.clear(); // If you want to reuse this, please clear it.

After the percentage of data collection reaches to 100, it means that the collected data can
be used to process MFM, you can stop MFM and call mMfmProcessor.addMtbFile(address,
path) and mMfmProcessor.startProcess() to process data. It will be processed for a period
of time, depending on the performance of the phone.

public void onDotMfmProgressChanged (String address, int percentage) {

if (percentage == 100) {

['Nhovella a1

activity?.runOnUiThread {

// Stop MFM first
mMfmManager.stopMfm (false) ;

// Need to run on UI thread.
// Processing collected data.
String path = mMfmManager.getMtbFilePath () ;

if (path.isNotEmpty ()) {
mMfmProcessor.addMtbFile (address, path);
mMfmProcessor.startProcess () ;

4.15.3 Completed MFM

After data processing is done, this callback method will be triggered, If the result is
DotMfmResult. ACCEPTABLE or DotMfmResult. GOOD, you can decide whether to write to
the sensor by calling mMfmManager.writeMfmResultToDevice(mtbData):

public void onDotMfmCompleted (String address, int result, bytel[]
mtbData) {

if (result == DotMfmResult.ACCEPTABLE
| | result == DotMfmResult. GOOD) {
boolean isSuccess = mMfmManager.writeMfmResultToDevice (mtbData) ;
// check write status, re-write, or update the UI
if (isSuccess) {

} eléé.{

}

NOTE:
One sensor corresponds to one manager. You need to clear the previous manager if this

manager is no longer used or renew a new manager.
mMfmManager.clear () ;

['Nhovella 22

4.16 Factory Reset

4.16.1 Initialization

After a device is connected via Bluetooth, the device can be reset to factory defaults.
To initiate factory reset, first implement ‘SettingsCallback’ and override its methods.

class FactoryResetActivity : AppCompatActivity(), SettingsCallback {

}
Create an instance of " DotSettingsManager"

var dotSettingsManager =
DotSettingsManager.getInstance (this@FactoryResetActivity)

4.16.2 Check for feature support

Check whether the device supports being restored to factory defaults. This check is
performed while resetting the device as well.

var doesSupport = device.doesSupportFactoryReset ()

4.16.3 Factory Reset

After a device is connected via Bluetooth, the device can be reset to factory defaults.
To initiate factory reset, first implement ‘SettingsCallback’

class FactoryResetActivity : AppCompatActivity(), SettingsCallback,
DotDeviceCallback {

}

Initiate factory reset:

val deviceLIst: ArrayList<DotDevice> = ArrayList ()
//Add DotDevices to list

devicelList.add (devicel)

devicelist.add (device?2)

devicelList.add (device3)

//Restore to factory settings
dotSettingsManager.restoreFactoryDefaults (devicelLIst)

['Nhovella 3

4.16.4 Get Result

Override the ‘onFactoryResetResult(String deviceAddress, bool isReset)’ method:

override fun onFactoryResetResult (deviceAddress: String?,result:
DotResetResults) {

Log.d ("AFTER RESET","Device : $deviceAddress | isReset : ${
result.name}")

}

4.17 Other functions

4.17.1 Read RSSI

While scanning sensors, you can get RSSI from scanner callback:
SomeClass implements DotScannerCallback {
public void onDotScanned (BluetoothDevice device, int rssi) {

}
}

You can also read RSSI when sensor is connected:
DotDevice.readRssi () ;

It will trigger the callback:
SomeClass implements DotDeviceCallback {
public void onReadRemoteRssi (String address, int rssi) {

}

4.17.2 Identify

To identify or find your device, you can call the following function. The device will fast blink

8 times and then a short pause when you call this function.
xsDevice.identifyDevice () ;

4.17.3 Power saving

In power-saving mode, sensors will turn off the signal pipeline and BLE connection, put the
MCU in a sleep state to ensure minimum power consumption. The default time threshold
to enter power saving mode is set to 10 min in advertisement mode and 30 min in
connection mode. These values are saved in the non-volatile memory and can be adjusted
in Movella Dot app or SDK.

There is an example to set power saving time in advertisement and connection mode both
to 30 minutes.

['Nhovella "

DotDevice.setPowerSaveTimeout (timeoutXMinutes, timeoutXSeconds,
timeoutYMinutes, timeoutYSeconds)

4.17.4 Button callback

If there is a single click on the power button during connection, a notification will be sent
with a timestamp when this single click is released. This function is called as “Button
callback”.

When the pressing time is 10~800ms, it is judged as a valid single click. The timestamp is
from sensor’s local clock and independent of synchronization.
SomeClass implements DotDeviceCallback {

public void onDotButtonClicked(String address, long timestamp) {

}

4.17.5 Power on options

This feature is to allow user to configure the Movella Dot v2 sensor to be powered on by
USB plugin or not. This setting is only available in v2 sensor.

By default, power on by USB is disabled. So, the sensor will be in charging status if
connected with USB cable. You can call enableUsbPowerOn() to set enable this feature.
xsDevice.enableUsbPowerOn (boolean isEnabled) ;

By enabling USB power on, the sensor will power on immediately after the USB plugin.
With this feature, you can power on multiple sensors with the USB plugin at once.

['Nhovella as

5 Appendix

5.1 Real-time streaming modes

NOTE:

You can get other data quantities from the available data in each measurement mode.
Refer to section 4.10.6Error! Reference source not found. for the conversions that can
be used.

5.1.1 Extended (Quaternion)
Table 10: Extended (Quaternion)

Mode name Payload ‘ Available data
e SampleTimeFine
PAYLOAD_TYPE_EXTENDED_QUATERNION = 36 bytes : Srgingizggrg%ﬁter”'ons)
e Status

5.1.2 Complete (Quaternion)
Table 11: Complete (Quaternion)

Mode name Payload Available data
e SampleTimeFine
PAYLOAD_TYPE_COMPLETE_QUATERNION | 32 bytes e Orientation (Quaternions)

e Free acceleration

5.1.3 Orientation (Quaternion)

Table 12: Orientation (Quaternion)

Mode name Payload Available data

e SampleTimeFine
PAYLOAD_TYPE_ORIENTATION_QUATERNION | 20 bytes e Orientation (Quaternions)

5.1.4 Extended (Euler)
Table 13: Extended (Euler)

Mode name Payload Available data ‘
e SampleTimeFine
PAYLOAD_TYPE_EXTENDED_EULER 32 bytes * Orientation (Euler Angles)
e Free acceleration
e Status

['Nhovella a6

5.1.5 Complete (Euler)

Table 14: Complete (Euler)

Mode name Payload Available data
e SampleTimeFine
PAYLOAD_TYPE_COMPLETE_EULER 28 bytes e Orientation (Euler Angles)

e Free acceleration

5.1.6 Orientation (Euler)
Table 15: Orientation (Euler)

Mode name Payload Available data

e SampleTimeFine
Orientation (Euler Angles)

PAYLOAD_TYPE_ORIENTATION_EULER ‘ 16 bytes ‘

5.1.7 Free acceleration

Table 16: Free acceleration

Mode name Payload Available data

SampleTimeFine
Free acceleration

PAYLOAD_TYPE_FREE_ACCELERATION ‘ 16 bytes ‘

5.1.8 High fidelity (with mag)
Table 17: High fidelity (with mag)

Mode name Payload Available data

SampleTimeFine
dq

dv

Angular velocity
Acceleration
Magnetic field
Status

PAYLOAD_TYPE_HIGH_FIDELITY_WITH_MAG | 35 bytes

5.1.9 High fidelity
Table 18: High fidelity

Mode name Payload Available data
SampleTimeFine

PAYLOAD_TYPE_HIGH_FIDELITY_NO_MAG 29 bytes Angular velocity

Acceleration
Status

['Nhovella 47

5.1.10 Delta quantities (with mag)
Table 19: Delta quantities (with mag)

Mode name Payload Available data

e SampleTimeFine
PAYLOAD_TYPE_DELTA_QUANTITIES_WITH_MAG | 38 bytes : 33

e Magnetic field

5.1.11 Delta quantities
Table 20: Delta quantities

Mode name Payload Available data

e SampleTimeFine
PAYLOAD_TYPE_DELTA_QUANTITIES_NO_MAG @ 32 bytes e dg

e dv

5.1.12 Rate quantities (with mag)
Table 21: Rate quantities (with mag)

Mode name ‘ Payload Available data
e SampleTimeFine
e Angular velocity
PAYLOAD_TYPE_RATE_QUANTITIES_WITH_MAG | 34 bytes e Acceleration
e Magnetic Field

5.1.13 Rate quantities
Table 22: Rate quantities

Mode name Payload Available data
e SampleTimeFine
28 bytes e Angular velocity
e Acceleration

PAYLOAD_TYPE_RATE_QUANTITIES_NO_MAG

5.1.14 Custom mode 1

Table 23: Custom mode 1

Mode name Payload Available data

SampleTimeFine
Orientation (Euler Angles)
Free acceleration
Angular velocity

PAYLOAD_TYPE_CUSTOM_MODE_1 40 bytes

['Nhovella s

5.1.15 Custom mode 2

Table 24: Custom mode 2

Mode name Payload Available data ‘

SampleTimeFine
Orientation (Euler Angles)
Free acceleration

PAYLOAD_TYPE_CUSTOM_MODE_2 34 bytes :
e Magnetic field

5.1.16 Custom mode 3
Table 25: Custom mode 3

Mode name Payload Available data

e SampleTimeFine
PAYLOAD_TYPE_CUSTOM_MODE_3 32 bytes e Orientation (Quaternions)
e Angular velocity

5.1.17 Custom mode 4

Table 26: Custom mode 4

Mode name ‘ Payload Available data

SampleTimeFine
Orientation (Quaternions)
dq

dv

Angular velocity
Acceleration

Magnetic field

Status

PAYLOAD_TYPE_CUSTOM_MODE_4 51

5.1.18 Custom mode 5

Table 27: Custom mode 5

Mode name ‘ Payload Available data

['Nhovella 49

SampleTimeFine
Orientation (Quaternions)
Acceleration

Angular velocity

PAYLOAD_TYPE_CUSTOM_MODE_5 44 bytes

['Nhovella S0

