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Abstract—Inertial motion capture (IMC) technology has
evolved rapidly, driven by advances in sensor miniaturization,
computing power, and data processing. Xsens has leveraged these
advancements to refine its optimization engine, integrating sensor
data with biomechanical models. Traditionally, many of these
models were based on outdated, male-biased cadaver templates.
To address this, Xsens developed Biomech 2.0: two new gender-
specific models based on in-vivo templates, tailored to accurately
capture the physical characteristics of both male and female
biological sexes. This integration, alongside refinements made
to the spine modeling, has significantly improved the precision,
accuracy and consistency of the Xsens MVN motion capture
system.

Our validation study reveals substantial gains in arm di-
mension accuracy, enhanced upper-body kinematics, and greater
accuracy in ground-reaching tasks especially when filling in body
dimensions, due to improved spinal flexibility. While changes in
lower-body kinematics were minimal, significant improvements
were observed in step width accuracy, particularly for females.

Despite the current reliance on a predominantly Caucasian
dataset, the introduction of gender-specific models marks a
major step forward in creating more inclusive biomechanical
models. These advancements not only enhance the performance
and reliability of Xsens MVN but also pave the way for more
personalized and accurate assessments in health, sports, and
ergonomics.

I. INTRODUCTION

Digitization of human motion has a long history, and motion
capture technologies have evolved with increase in the digital
computing power. Most of these technologies, if not all, limit
their usage to a pre-designated motion capture space with a
fixed infrastructure, which is prohibitive in terms of flexibility,
usability and portability. The miniaturization of inertial sensors
has transformed the way we analyze moving objects. The
combination of the sensors with sensor fusion algorithms and
biomechanical models has led to the development of inertial
motion capture (IMC) technology. Over the past two decades,
IMC has been used by a growing community in a wide range
of applications; in the health and sports market, IMC has
been put to use for injury prevention [29], sports performance
[32], [34], and workplace ergonomics [28], [31]; whereas in
the entertainment market, it is extensively used for character
animation [33], and augmented and virtual reality applications
such as the Meta’s project Aria [54].

Inertial and magnetic measurement units (IMMUs) measure
the magnetic field, linear acceleration, and angular velocity
over time, rather than the absolute position and orientation
in global space. Since heading of a body segment relies on

Fig. 1: Xsens MVN new Female model.

measurement of the earth’s magnetic field, IMC is generally
very susceptible to magnetic disturbances. Furthermore, the
computation of position from double-integration of accelera-
tion is extremely unreliable due to accumulation of positional
drift. In the last decade, Xsens has made substantial progress
in addressing these challenges and overcoming the errors
associated with inertial and magnetic sensors technologies.
This effort has resulted in a state-of-the art optimization engine
that combines advanced biomechanical models with the infor-
mation from all the sensors, achieving immunity to magnetic
distortion and resistance to positional drift [3]. The Xsens
biomechanical model not only contains information about the
kinematic chain but also about body segment properties such
as segment lengths, segment center of mass (CoM) positions
and segment mass ratios. These body segment parameters
are crucial when digitizing motion and posture, especially in
health, sports and ergonomics applications [11]. In fact, such a
model relates the IMU and magnetic data to the positions and
orientations of human body segments in global space, via a
sensor-to-segment calibration procedure. In addition, precise
sensor placement and careful model scaling are critical to
fully leverage the capabilities of the system, ensuring accurate,
objective and reliable analyses [35].

The development of biomechanical and musculoskeletal
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models has a rich history spanning more than a century. While
Borelli’s work in the 17th century initially laid down founda-
tional principles [41], it was not until the late 19th and early
20th centuries that significant developments occurred with
the application of mathematical models to human movement.
In particular, a major leap came in the middle of the last
century with the advent of computer technology and advanced
imaging, which greatly increased the precision and accuracy
of these models [42], [43]. Today, biomechanical models are
categorized into two main types: generic models and subject-
specific models derived from medical imaging [39], [40]. As
opposed to subject-specific models, generic models are based
on template anatomies representing specific populations (e.g.,
elderly males, athletic young males, or women). Unfortunately,
these templates often rely on data from male cadavers [4],
[13], [14], [17] or a limited number of female subjects [15],
with few studies focusing exclusively on women [16]. Conse-
quently, most commonly used generic biomechanical models
describe a typical young Caucasian male [8].

However, as pointed out in [22], males and females are
not just scaled versions of each other. The physiological
differences do impact amongst others the skeletal structure.
This is confirmed in early research, which highlighted that
model generalizations, particularly when applied to individuals
of the other biological sex, can lead to significant errors in esti-
mating body segment lengths and inertial properties [4]. These
inaccuracies can impact outcome parameters such as joint
biomechanics during walking [18] and drop landings [19],
affecting both kinematic and kinetic analyses. For instance,
recent studies showed that gender differences significantly
influence lower extremity biomechanics during running and
landing tasks [45], [46]. Moreover, gender-specific discrep-
ancies in biomechanical models can affect upper- and lower-
body ergonomic assessments and diagnoses of musculoskeletal
disorders [49], [50]. Although the scientific community gain
greater awareness of the differences and its impact, there is
still a bias towards male-participants in studies, referred to
as ’Biasmechanics’ in [22]. This underscores the importance
of developing and validating biomechanical models that ac-
curately represent both sexes to ensure more reliable and
objective results in various applications [44], [47], [48].

Xsens MVN software partially addresses gender differences
by allowing users to customize the generic model into a
subject-specific one, specifically by providing individual body
dimensions such as segment lengths. This process, however, is
time-consuming, requires knowledge of anatomical landmarks,
and is susceptible to human error and variability between
operators, which can affect the accuracy of joint kinemat-
ics and its objectivity [36], [37]. To mitigate these issues,
Xsens facilitates the user by offering a generic model that
is scaled based on the body height and foot length, designed
to approximate the participant’s anthropometry. Unfortunately,
this model — referred to as Biomech 1.0 (BM1) — is based
on data from predominantly male subjects [52]. To account
for gender diversity, Xsens has put efforts into developing
Biomech 2.0 (BM2): two generic models to better reflect

anatomical variability. In addition, refinements were made to
the spine to further improve accuracy of upper-body kinema-
tics.

This paper presents and evaluates BM2, the two newly
developed biomechanical models designed to portray the phys-
ical characteristics of male and female biological sexes. The
performance of these models is assessed by comparing their
results with data obtained from an optical motion capture
system. Additionally, BM2 models are compared to the current
BM1 model to investigate the performance both in terms of
accuracy and consistency.

II. MODEL

The biomechanical model within Xsens MVN software has
evolved from its male-centric biomechanical model to one
that accounts for both male and female biological anatomy
separately. Building on the same model basics as BM1, the
BM2 models include two-fold adjustments. First, some generic
changes were made to the spine function, which are present
in both models. The second set of adjustments were gender-
specific, and related to body segment parameters such as
segment lengths, segment mass and CoM ratios.

This section is organized as follows: the commonality is de-
tailed in subsection A; the two-fold adjustments are discussed
in subsection B and C respectively; finally, in subsection
D, the expected impacts of the adjustments on the outcome
parameters are discussed.

A. Model basics

As it is the case with BM1, the BM2 models have 23
segments, and a kinematic chain with 22 ball-joints with simi-
lar constraints, contact models and scaling algorithm. Motion
trackers are placed on 17 of the segments. Those are the feet,
lower legs, upper legs, pelvis, shoulders, sternum, head, upper
arms, forearms and hands. The remaining six segments are
the toes, neck, and spine segments – L5, L3, and T12. The
motion of those segments is estimated based on information of
connected segments combined with the biomechanical model.
As previously mentioned, to estimate segment kinematics
through sensor measurements, it is necessary to determine the
alignment between sensors and segments. To do so, all motion
trackers have to be mapped onto the right segment via the
so-called sensor-to-segment calibration. Since the orientation
of the motion trackers in the global space is unknown, the
orientations of the segments are assumed to be known via a
reference pose. In Xsens MVN the calibration procedure starts
with the subject in an N-pose (recommended) or T-pose, after
which the subject has to walk a few meters back and forth. For
more information on the model basics, we refer to the Xsens
MVN white paper by Schepers et al. [3].

B. Generic changes

Common to both of the new BM2 models, the generic
changes aim to gain accuracy in estimating the upper body
kinematics. First, the spine function is refined to improve the

2



accuracy of estimated motion and provide a better physiolo-
gical representation of the spine curvature during standing and
bending.

The human spine is curved like an S-shape during standing,
while it takes on a C-shape during bending. Each spine
segment contributes in a different amount during bending,
known as the lumbopelvic rhythm [2]. With only one motion
tracker located at the pelvis, shoulders and sternum, it is
unfeasible to track the shape of the spine solely with sensor
data. Hence, a theoretical approach, known as spherical linear
extrapolation (SLERP), is adopted to interpolate the shape
of the spine segments. More specifically, each segment is
being allocated a weight contribution to take into account the
lumbopelvic rhythm. This results in more flexibility during
bending, increasing the range of motion, and a more realistic
capture of the S- to C-shape of the spine physiology.

In addition to refining the spine function, the lengths of
spine segments are also adjusted (see subsection C). Moreover,
the changes in segment lengths induced a shift in the point
of attachment of the shoulders to the torso, which had to be
adjusted accordingly.

C. Gender-specific model changes

Gender-specific adjustments are made to the segment prop-
erties, which are based on anatomy templates of living sub-
jects. The BM2 male model is now based on data from 31
healthy Caucasian male adults, with an average age of 27.5
years, a mean weight of 80.5 kg and an average stature of
1.77 m [17]. The BM2 female model is based on a database
that consists of 46 healthy Caucasian female adults with
an average age of 31.2 years, a mean weight of 63.9 kg
and an average stature of 1.61 m [16]. From there, all body
dimensions of both male and female model are linearly scaled
to a 1.70 m default model in Xsens MVN.

The parameters such as segment lengths and ratios for both
the segment mass and CoM locations are based on Dumas et
al. [5], who adjusted the work of McConville et al. [17] and
Young et al. [16], to express the parameters in the conventional
coordinate system [24]–[26]. As a result, in both new models,
the dimensions of all body segments are updated, with the
most noticeable adjustments being in shoulder and hip widths,
having broader shoulders and narrower hips for male compared
to female.

D. Expected effect on outcome parameters

By implementing gender-specific models, we expect the
BM2 models to better approximate the participant’s anthropo-
metry when scaled based on the body height and foot length of
the participant. In addition, with the specific changes regarding
the spine function and shoulder attachment points, we also
expect an increase in accuracy regarding the whole upper body
kinematics. This should be observable in motion capture of
hand clapping and spine range of motion. Regarding the lower
body, we expect the changes to minimally affect the joint
angles, but it would be more pronounced in the estimation of

the spatio-temporal parameters, such as step length and step
width, due to the changes in the pelvis dimensions.

III. METHOD

To objectively assess the performance of the new gender-
specific models, a comparative evaluation is performed bet-
ween the BM2 models and BM1. In addition, the models –
BM1 and both BM2 versions – are compared to an optical
marker-based reference system combined with an OpenSim
model.

A. Setup

A group of 11 young adults participated in the study: 6
males (avg. height: 185.1 cm) and 5 females (avg. height:
166.0 cm). Each participant was instructed to perform activities
that would independently mobilize their upper and lower
bodies. The activities include walking at a self-chosen pace,
performing squat jumps, flexion of the trunk, and lifting the
arms, with a hand clap occurring both above the head and in
front of the body of the participant.

Motion capture data was collected using the full body Xsens
MVN Awinda system (17 sensors) and an optical marker-
based system (Qualisys optical system with 15 Miqus M3
cameras set), with both systems recording at a frequency rate
of 60 Hz. For the marker-based system, the sports marker set
was used, which includes 43 reflective markers. To avoid errors
due to motion artefacts, the reflective markers were placed
on bony landmarks on the skin as illustrated in Figure 2.
Furthermore, to avoid inter-operator variability in the output,
anthropometric values were measured by the same operator for
all subjects. The body height and foot length were provided
as inputs for the scaling of the Xsens MVN biomechani-
cal models. Regarding the sensor-to-segment calibration, the
recommended (N-Pose + Walk) protocol of Xsens MVN was
followed. In addition to the result of the calibration provided
by the software, the quality was further assessed and confirmed
by ensuring sound representation of inter-hand and inter-feet
distances. Only after calibration, Qualisys and Xsens MVN
were synchronized using the vendor-supported integration
protocol [6].

Fig. 2: Subject wearing Xsens MVN trackers and optical markers.
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B. Data analysis

Kinematics data were extracted from Xsens MVN Analyze
after performing HD reprocessing. Optical motion capture
data were processed and low-pass filtered using a zero-lag
fourth-order Butterworth filter with an 8 Hz cut-off frequency
to reduce noise [51]. Gender-specific OpenSim models
were scaled for each subject [9], [10], and joint kinematics
were calculated using the Inverse Kinematics tool [27]. The
analysis was divided into three main sections: full-body,
upper-body, and lower-body evaluations.

The full-body analysis evaluated the automatic scaling
of BM2 models against measured body dimensions, with a
comparison made to BM1. Scaling errors were expressed
as percentages, and a paired Student’s two-tailed t-test
(α = 0.05) assessed statistical significance in differences
between both Biomech models [36], [37].

The upper-body analysis assessed model improvements
through inter-hand distances during clapping events and trunk
flexion performance. First the effects of the new segment
lengths were assessed by evaluating the hand positions,
representing the end of the kinematic chain, between Xsens
MVN models and optical marker data. Specifically, the
Euclidean distances between the hands at clapping instants
were calculated for each system, with errors defined as
differences between these distances. The analysis excluded
hand thickness effects since markers were consistently
placed on hand surfaces. Accuracy was assessed using Root
Mean Square Error (RMSE), and statistical significance was
evaluated with a paired t-test. Second, the performance of the
new spine model was assessed during a trunk flexion analysis
by comparing wrist marker distances to the ground at the
lowest point of the motion, between the Xsens MVN models
and optical marker data. Accuracy was assessed using RMSE
(as absolute error) across all trials and subjects.

The lower-body analysis evaluated the impact of model
changes on joint kinematics and spatial gait parameters during
walking at a self-chosen pace and squat-jump trials. Estimates
of the hip, knee and ankle joint angles (Flexion/Extension
as F/E, Adduction/Abdution as A/A, and Internal/External
rotation as I/E) by applying BM2 models were compared to
that of BM1 and those from the OpenSim IK tool [7], [27].
The RMSE assessed accuracy, while the standard deviation of
errors (STDE) provided insight into within-cycle variability
and consistency across subjects. The spatial parameters - step
width and length during gait cycles - were derived from heel
markers and compared between Xsens MVN estimates and
optical data. Errors were expressed as absolute differences,
with statistical significance evaluated using a paired t-test.

For all upper- and lower-body analyses, errors were reported
as mean± standard deviation. The RMSE quantified accuracy
relative to optical markers, or optical markers with OpenSim
models. Statistical significance was evaluated using a paired

Student’s two-tailed t-test (α=0.05).

IV. PERFORMANCE EVALUATION

A. Estimation of body dimensions

Regardless of the model used, measured body height and
foot length are essential inputs for Xsens MVN as they are
required to scale all other body dimensions. These dimensions
were therefore excluded from the analysis. Errors in other
scaled body dimensions relative to measured dimensions are
shown in Figure 3.

Overall, body dimensions were better estimated with the
BM2 models, with the most notable gains observed in arm
dimensions. Errors in arm span were reduced by over 50%,
while errors in elbow and wrist spans dropped below 2.2%
(∼2 cm) and 5% (∼6 cm), respectively (p<0.05). These sub-
stantial improvements in arm-related metrics are expected to
enhance the accuracy of upper-body kinematics.

Statistically significant differences were observed where the
BM2 models performed slightly worse than BM1: shoulder
height and hip height. For shoulder height, BM1 consistently
overestimated the dimension by 1.36%, while BM2 under-
estimated it by 1.52% (p<0.05). For hip height, BM1 was
more accurate by 2.5% (5.09% vs. 7.48%, p<0.05). This
difference likely stems from the difficulty in measuring the
greater trochanter, a landmark that is challenging to palpate.
Importantly, despite the statistical significance, the absolute
median error remained around 5 cm across subjects, falling
within the range of typical human measurement error and
minimizing practical impact [36].

Fig. 3: Relative error (%) in body dimensions for BM1 (blue) vs.
BM2 (red) models over all participants. The asterisk symbol

indicates statistically significant differences (p<0.05)

B. Upper body

This section evaluates the performance of BM2 models for
upper-body motion, focusing on inter-hand distance during
hand clapping and spine flexibility during trunk flexion.

1) Inter-hand distance evaluation:

The absolute error of the inter-hand Euclidean distance
is shown in Figure 4 and Figure 5 for clapping above the
head and in front of the body respectively. BM2 significantly
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improved the accuracy of inter-hand distance for clapping in
front of the body (p<0.05), where errors decreased by over
40%, achieving an RMSE of 8.5± 7.5 cm. In contrast, a slight
decrease in accuracy was observed for clapping above the
head, with an error increase of less than 1.0 cm.

Gender-specific analyses confirmed these trends. In males,
error increased by 1.4 cm for clapping above the head, while
frontal clapping error dropped by over 55% (5.6± 5.4 cm
vs. 12.9± 5.0 cm). In females, error slightly increased above
the head (0.5 cm), but improved by 35% when clapping in
front of the body, reducing the error from 16.9± 8.3 cm to
11.0± 8.6 cm.

Fig. 4: Absolute error (cm) in inter-hand Eucledian distance while
clapping above the head, for BM1 model (blue) and BM2 models

(red). Results are shown for all participants
(F for females, M for males).

Overall, these results suggest a robust improvement for
clapping in front of the body, albeit, at a cost of slight
decrease in accuracy when clapping above the head. While
the gender-specific trends should be interpreted with caution
due to the small sample sizes (5 and 6 subjects per group),
the pattern held across both genders and in the full cohort
indicating a meaningful trend. This discrepancy likely stems
from limitations in the shoulder joint model. Clapping above
the head demands substantial arm elevation which involves
scapular motion according to the scapulohumeral rhythm [55].
This additional scapular motion is not fully present. While
BM1 may have compensated for these limitations through
overestimated arm lengths, BM2’s more accurate body dimen-
sions exposes them. By contrast, clapping in front of the body
involves less shoulder elevation and falls within a more stable
range for the current shoulder model. Here, BM2’s refined
anthropometry — particularly in arm dimensions — directly
enhances accuracy.2) Spine range of motion:

Figure 6 presents the performance of capturing full spine
range of motion for both biomech models.

The initial analysis focused on wrist-to-ground distance
during maximal trunk flexion. BM2 showed a slight reduction
in accuracy here (error increased by less than 0.6 cm), though a
small improvement was observed for females (0.2 cm). As with
the inter-hand distance evaluation, these results are sensitive to
the small sample sizes (5 and 6 subjects per group), and appear
driven more by changes in arm length scaling than the refined

Fig. 5: Absolute error (cm) in inter-hand Eucledian distance while
clapping in front of the body, for BM1 model (blue) and BM2

models (red). Results are shown for all participants
(F for females, M for males).

spine mechanism (Section IV-A). Indeed, when incorporating
all subject-specific dimensions, BM2 significantly improved
wrist-to-ground accuracy, reducing error by over 3 cm — a
25% gain. This pattern held across both genders.

Fig. 6: Absolute error (cm) in the wrist-to-ground distance during
maximal trunk flexion, for BM1 model (blue) and BM2 models

(red). Results are shown for all participants
(F for females, M for males).

To isolate the spine’s contribution, a secondary analysis
evaluated shoulder-to-ground distance during trunk flexion
(Figure 7). By removing arm length influence, BM2 reduced
error here from 10.3± 5.8 cm to 8.5± 6.6 cm — a gain of
∼2 cm (p<0.05) — with consistent improvements across sub-
jects.Overall, these findings indicate a meaningful gain in spine
flexibility modeling. The small decline in wrist-to-ground
accuracy for the BM2 scaled model likely results from
limitations in the shoulder model and especially in shoulder
translation — during bending and reaching — which can
introduce 5–10 cm of variability. Thus, as with hand clapping,
this highlights shoulder model limitations rather than the
gender-specific updated scaling of BM2.

Together, these results demonstrate BM2’s enhanced phys-
iological representation and accuracy for upper-body motion.
Substantial improvements in frontal clapping and trunk flexion
accuracy confirm the benefits of gender-specific anthropom-
etry and refined spine function. These gains are especially
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Fig. 7: Absolute error (cm) in the shoulder-to-ground distances
during maximal trunk flexion, for BM1 model (blue) and BM2

models (red). Results are shown for all participants
(F for females, M for males).

relevant for time-sensitive applications — where accurate
scaling makes a measurable difference — or tasks requiring
coordinated movements across arms, shoulders, and spine.

C. Lower body

This section evaluates the impact of model changes on
lower-body kinematics and spatial gait parameters during
walking at self-chosen pace and squat-jump trials.

1) Joint angles analyses:

Figure 8 and Figure 9 present the mean and standard
deviation of joint angles during gait cycles and squat jump
repetitions, comparing BM1 and BM2 models against marker-
based OpenSim reference data.

Both Biomech models versions demonstrate excellent corre-
spondence, with correlations ranging higher than 0.98± 0.03.
A small but consistent offset, lower than 1°, reflects differences
in body segment properties, as both Biomech versions share
the same calibration file and kinematic chain.

Overall, BM2 models demonstrate strong to excellent corre-
lations with OpenSim estimates (from 0.57± 0.46° for the hip
A/A joint angle during the squat jump trials, to 0.98± 0.01°
for the hip and knee F/E joint angles during the walking trials).
This is corroborated by RMSE values and error variability
reported in Table I and Table II, which align with prior
literature [38]. Only the hip I/E rotation during gait analysis
exhibited a weaker correlation (0.31± 0.36°), although RMSE
values were comparable to the other joint angles over both
conditions. In addition, OpenSim estimates exhibit greater
variability, particularly in hip F/E angles. These discrepancies,
while expected due to subject-specific variations, stem from
differences in biomechanical modeling approaches.

Key sources of discrepancies between both Xsens MVN
models and OpenSim include variations in local segment frame
definitions, marker placement accuracy, and initialization
methods, such as Xsens MVN’s sensor-to-segment calibration
versus OpenSim’s scaling and inverse kinematic tools. Even
minor errors, such as a millimeter discrepancy in the joint
axis of rotation, can significantly impact output data [53]. In
prior work [3], applying OpenSim’s static pose during Xsens

Fig. 8: Mean (line) and standard deviation (shaded area) of the joint
angles of both legs for the hip (F/E, A/A, I/E), knee (F/E) and

ankle (F/E) for walking estimated from BM1 (blue), BM2 (red) and
optical via OpenSim [7] (black). Gait cycles are from the right legs,

averaged over all subject, time-normalized and expressed as
percentage of the gait cycle.6



Fig. 9: Mean (line) and standard deviation (shaded area) of the joint
angles of both legs for the hip (F/E, A/A, I/E), knee (F/E) and

ankle (F/E) for jumping estimated from BM1 (blue), BM2 (red) and
optical via OpenSim [7] (black) and expressed as percentage of the

jump cycle.

MVN calibration substantially reduced RMSE and increases
variability, aligning Xsens MVN outputs more closely with
OpenSim estimates. We refer to [3] for more details on the
influence of calibration poses on joint kinematics.

TABLE I: RMSE (mean± std) and STDE (mean± std) in degrees
(°) between the joint angles estimated from the Xsens MVN models
and OpenSim during walking trials. Each column indicates the joint

angles (F/E, A/A, and I/E) of the hip, knee and ankle.

BM1
Hip F/E Hip A/A Hip I/E Knee F/E Ankle F/E

RMSE 14.4± 9.9 3.9± 1.5 6.7± 2.9 5.4± 1.8 10.6± 3.6
STDE 2.9± 0.9 3.1± 1.1 4.3± 1.3 4.0± 1.3 5.1± 1.7

BM2
Hip F/E Hip A/A Hip I/E Knee F/E Ankle F/E

RMSE 14.5± 10.0 3.8± 1.6 6.6± 2.8 5.4± 1.8 10.8± 3.5
STDE 2.8± 0.8 3.1± 1.1 4.2± 1.3 4.0± 1.3 5.1± 1.7

TABLE II: RMSE (mean± std) and STDE (mean± std) in degrees
(°) between the joint angles estimated from the Xsens MVN models
and OpenSim during squat jump trials. Each column indicates the

joint angles (F/E, A/A, and I/E) of the hip, knee and ankle.

BM1
Hip F/E Hip A/A Hip I/E Knee F/E Ankle F/E

RMSE 16.9± 11.7 4.6± 1.9 8.0± 4.1 11.6± 14.8 15.9± 14.0
STDE 11.6± 12.4 2.5± 1.3 4.9± 1.6 11.2± 14.9 11.7± 14.9

BM2
Hip F/E Hip A/A Hip I/E Knee F/E Ankle F/E

RMSE 17.3± 11.4 4.6± 1.9 8.0± 4.1 11.6± 14.9 15.7± 13.9
STDE 11.9± 12.0 2.5± 1.3 5.0± 1.7 11.1± 15.0 11.7± 14.8

2) Spatial parameters:

Table III summarizes the accuracy of step length and step
width estimates derived from heel markers data during gait
cycles, analyzed across all subjects as well as male and female
groups separately.

Both Biomech versions overestimate step length, but BM2
demonstrates a marginal, but statistically significant im-
provement, with errors decreasing from -5.4± 3.6 cm to -
5.2± 4.7 cm (p<0.05). These improvements were consistent
across all subjects. Substantial enhancements were observed in
step width estimation, where errors were reduced from 4.0 cm
in the BM1 model to 3.5 cm in the BM2 models. Female-
specific improvements were particularly pronounced, with a
gain of 1 cm (from 3.4± 3.7 cm to 2.4± 3.7 cm).

Despite methodological differences from previous studies
[3] — which compared the Xsens MVN gait report with the
Vicon plug-in-gait report — BM1’s performance aligns with
established literature. BM2, however, achieved slightly greater
accuracy, particularly in step width estimation, underscoring
its advancements in scaling and value of gender-specific body
dimensions.

V. CONCLUSION

This white paper presents a comparative performance
evaluation between BM1 - generalized - and BM2 - gender-
specific - Xsens MVN biomechanical models, highlighting
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TABLE III: Absolute distance (mean± std) of the step lengths and widths for all three systems over both legs, absolute error (mean± std)
between the optical data and the Xsens MVN models, and the differences (mean± std) between BM1 and BM2 models in centimeters

(cm). The analysis was conducted over all subjects (All), and also for each gender: Females and Males.

Distances (cm)
All Female Male

Length Width Length Width Length Width
Optical 62.1± 5.3 10.1± 4.4 61.2± 5.8 8.4± 4.4 63.0± 4.6 11.5± 3.8
BM1 67.6± 6.3 6.1± 2.2 66.8± 7.5 5.0± 1.6 68.2± 5.0 7.0± 2.2
BM2 67.4± 6.8 6.6± 2.1 66.5± 8.1 6.0± 1.6 68.0± 5.4 7.2± 2.2

Absolute error/Bias (cm) between optical data and Xsens MVN models
Length Width Length Width Length Width

BM1 -5.4± 3.6 4.0± 3.5 -5.6± 4.0 3.4± 3.7 -5.3± 3.2 4.5± 3.3
BM2 -5.2± 4.7 3.5± 3.6 -5.4± 5.4 2.4± 3.7 -5.0± 4.1 4.3± 3.3

Differences between BM1 and BM2 (cm)
Length Width Length Width Length Width

1.0 vs. 2.0 1.9± 1.9 0.7± 0.5 1.7± 1.7 1.1± 0.2 2.0± 2.0 0.2± 0.2

overall enhancements in accuracy. While a slight increase
of error could be observed for a few parameters in some
motions, they reflect the enhanced physiological representation
of BM2. Indeed, the most substantial gains achieved by BM2
gender-specific models lie in their enhanced anatomical
scaling accuracy and improved precision of upper-body
kinematic modeling. By incorporating gender-specific body
dimensions, the models have significantly refined arm scaling,
which directly impacts accuracy and consistency of inter-
hand distances as well as the overall movement precision.
Furthermore, the refinement of the spine model made it
more physiological correct, improving flexibility and spine
range of motion, enhancing the system’s ability to reliably
capture complex and coordinated upper-body movements.
Furthermore, incorporating all subject-specific dimensions
significantly enhanced BM2 motion tracking accuracy. These
advancements are especially critical for applications requiring
high precision and consistency, such as physical therapy,
ergonomics, robotics, and personalized motion analysis.

Despite the continued reliance on data from a primarily
Caucasian population, the shift toward gender-specific models
marks a pivotal advancement in our biomechanical model.
While areas for further refinement remain - such as the shoul-
der model - these improvements represent a substantial step
forward in enhancing the Xsens MVN system’s performance,
accuracy, and reliability. The new Xsens MVN gender-specific
models provide a more robust framework, offering more
objective assessments tailored to individual needs, paving the
way for more precise and inclusive motion tracking in the
future.

HIGHLIGHTS

With the introduction of the new BM2 gender-specific
models, Xsens MVN enhanced its motion tracking accuracy
and consistency with substantial gains in:

• Arm Dimension Accuracy: Arm span errors reduced
to <2.9% (<5 cm) and elbow span errors to <2.1%

(∼2 cm).
• Clapping Motion Precision: inter-hand distance errors

improved by over 40%, now <9 cm.
• Spine Flexibility and Accuracy: Shoulder-to-ground dis-

tance improved by ∼2 cm - with the spine portraying a
physiological lumbopelvic rhythm.

• Gait Spatial Parameters: Step width accuracy improved
by 0.5 cm overall and 1.0 cm for females.
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