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This paper presents an overview of the research that we carried out during the 
Master, PhD (Faber, 2010) and Post-doc projects of Gert Faber in the past decade. 
The main aim of this research is the development and validation of an ambulatory/
wearable measurement tool for automated assessment of biomechanical loading 
of the joints, with a focus on the spine.

Background

Low back pain is still a major socioeconomic burden (Vos et al., 2012), and me-
chanical loading of the spine is regarded to be a major cause. Therefore, methods 
have been developed to assess spinal loading (moments/forces) in the laboratory 
using advanced equipment such as 3D motion capture systems and force plat-
forms. Besides laboratory studies, accurate assessment of spinal loading is also 
important in field studies regarding the prevention of occupational low back pain. 
For instance, in epidemiologic studies investigating the relation between spinal 
loading and low back pain  (Hoogendoorn et al., 1999; Kuiper et al., 2005; Lötters 
et al., 2003), and studies investigating the effect of ergonomic interventions on 
spinal loading at work (Lötters and Burdof, 2002; van der Molen et al., 2005). 

In the first part of this paper we will provide some examples of typical laboratory 
studies that we carried out. In the second part some studies will be presented in 
which a working situation from the field was simulated in the lab and laboratory 
equipment was utilized in the field setting. The last section of this paper discusses 
more recent research about the validation of new wearable measurement techno-
logies for the assessment of spinal loading in the field. 

Typical biomechanical lab studies

Over the years we have done several typical biomechanical lab studies  (Faber et 
al., 2009a; Hoozemans et al., 2007; Kingma et al., 2006a; Kingma et al., 2006b; 
Kingma et al., 2010). For example (Figure 1), in some studies we investigated 
the effect of lifting techniques (e.g. stoop, squat, weightlifter’s and straddle tech-
niques) on spinal loading under different conditions (varying box dimensions and 
lifting height & weight). The conclusion of these studies is that the most effective 
lifting technique is dependent on the task constraint. For example, while a squat 
technique results in lower spine loads then a stoop technique in case the box with 
handles is small enough to be lifted between the knees. However, when a box is 
too large to be lifted between the knees, the opposite is true. 
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Bring field to the lab and lab to the field

Because typical lab studies are not so realistic, subject probably don’t move in a 
natural way. Therefore, we performed a number of studies in which we brought 
the field to the lab and the lab to the field.

In one study (Figure 2, left) we simulated a construction lifting task in the 
laboratory (Faber et al., 2009c; Faber et al., 2007, 2011). One important finding 
was that lifting height has more effect on the spinal loading then block mass. One 
reason for this is that construction workers choose to lift the lighter blocks from a 
further horizontal position resulting in an attenuated effect of block mass. 

In another study (Figure 2, right) we investigated the effect of ship motion on 
spinal loading (Faber et al., 2008). In this study we transported all our lab equip-
ment to a navy ship and performed a lifting experiment with navy personnel while 
sailing at sea. The main finding was that spinal loading increased with increasing 
ship motions (due to the height of the waves and the direction and speed of the 
vessel), and that even highly experience personnel was unable to adjust the motion 
pattern to cancel out the effect of the waves on spinal loading.

Figure 1: Typical lab study investigating the effect of lifting technique on spinal loading

Figure 2: Left: Study with construction workers in the laboratory performing a simulated 
building block lifting task (bringing the field to the lab). Right: Study in which the effect 
of ship motion was measured on a shop at sea using lab equipment (bringing the lab to 
the field)
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Validation of ambulatory measurement systems

Even when the work situation is accurately simulated in the laboratory, laboratory 
conditions may still affect natural behavior (white coat effect). The same holds 
when measuring with laboratory equipment in the field. It would better to study 
subject in their own work environment, without using equipment that limits the 
natural motion pattern. In the past this had been mostly done using video analy-
sis. However, some disadvantages are that this is very laborious, there is still an 
external observer, and the cameras have a limited measurement volume. 

To overcome these limitations, more recently we started working with wearable 
sensors, developed for automated ambulatory measurement in the field. We pro-
posed to use inertial sensors for measurement of kinematics and instrumented 
Force Shoes for the measurement of external forces, also allowing for kinetic 
calculations (e.g., joint moments) (Figure 3).

 In a series of validation studies we have investigated the performance of the 
different sub-systems. We showed  that kinematics can be obtained using iner-
tial sensors with good accuracy (Figure 4, left) (Faber et al., 2013b; Faber et al., 
2013c; Faber et al., 2009b), and that ground reaction forces can be measured 
accurately with ForceShoes (Figure 4, right) (Faber et al., 2012; Faber et al., 
2009d). In another experiment we showed that is it possible to estimate hand 
forces based on segment accelerations and ground reaction forces (Figure 5) 
(Faber et al., 2013a). In the most recent paper (Faber et al., 2015) we showed 
that spinal moments due to trunk motion can be estimated using an inertial motion 
capture (IMC) system with sufficient accuracy (Figure 6). 

Figure 3: This figure shows how the laboratory measurement equipment could be re-
placed by ambulatory measurement techniques, combined in one system.
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Figure 5: Typical example showing how accurately hand forces can be estimated based 
on ground reaction forces and full-body segment accelerations.

Figure 6: Proposed measurement system, combining an inertial motion capture (IMC) 
system and ForceShoes for estimation of spinal (L5/S1) moments using a top-down 
inverse dynamics model.

Figure 4. Left: Result of the study showing that inertial sensors can  measure 3D angles 
with high accuracy. Right: Study showing the validity of force ForceShoes for measure-
ment of 3D ground reaction forces: signals completely overlap with those measured by a 
forceplate.

Gert S. Faber et al.
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Figure 7: Typical example showing how accurately spinal moments (L5/S1) can be esti-
mated using a full-body inertial sensor suit.

Currently we are working on combining all the sub-systems for the estimation 
of spinal loading due to body segment motion and external hand forces. Because 
it is not practical to measure hand forces in the field, we propose to estimate the 
hand forces based on the GRFs measure with the ForceShoes and the segment 
accelerations measure with the inertial sensors (see fig 7). Subsequently, a top-
down inverse dynamics procedure will be applied, using hand forces plus upper 
body orientation and accelerations to calculate moments at the lowest lumbar 
vertebral level (L5/S1).  After this validating this final step, we would like to apply 
the proposed system in future field studies.
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